摘要
该文研究竖直悬臂输流管道系统在平衡位置附近受扰后的非线性动力学行为,为管道系统的参数设计提供理论指导。首先通过Hurwitz判据得到平衡点的稳定条件,然后分析平衡点在稳定条件不满足时的分岔情况。针对特征根为1个零和1对纯虚根的临界情况,分析参数(μ,β_(17))受扰动后系统的局部分岔行为,得到平衡解的稳定边界及相应的稳定区域,最后用数值结果验证理论分析。
In this paper,the nonlinear dynamic behavior of the vertical cantilever pipeline system disturbed near the equilibrium position is studied,which provides theoretical guidance for the parameter design of the pipeline system.Firstly,the stability condition of the equilibrium point is obtained by the Hurwitz criterion,and then the bifurcation of the equilibrium point is analyzed when the stability condition is not satisfied.Aiming at the critical case that the characteristic root is a zero and a pair of pure imaginary roots,the local bifurcation behavior of the system after the parameters(μ,β_(17))is perturbed is analyzed,and the stable boundary and the corresponding stable region of the equilibrium solution are obtained.Finally,the theoretical analysis is verified by numerical results.
出处
《科技创新与应用》
2022年第29期84-86,90,共4页
Technology Innovation and Application
基金
盐城工学院2021年大学生创新训练计划项目(335)
2021—2022年盐城工学院横向项目(YG2021040903)
盐城工学院横向项目(2021111601)。
关键词
管道系统
平衡解
Hurwitz判据
局部分岔
稳定边界
pipeline system
equilibrium solution
Hurwitz criterion
local bifurcation
stable boundary