期刊文献+

A Conservative Gradient Discretization Method for Parabolic Equations 被引量:1

原文传递
导出
摘要 In this paper,we propose a new conservative gradient discretization method(GDM)for one-dimensional parabolic partial differential equations(PDEs).We use the implicit Euler method for the temporal discretization and conservative gradient discretization method for spatial discretization.The method is based on a new cellcentered meshes,and it is locally conservative.It has smaller truncation error than the classical finite volume method on uniform meshes.We use the framework of the gradient discretization method to analyze the stability and convergence.The numerical experiments show that the new method has second-order convergence.Moreover,it is more accurate than the classical finite volume method in flux error,L2 error and L¥error.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第1期232-260,共29页 应用数学与力学进展(英文)
基金 supported by the National Natural Science Foundation of China(No.11971069),NSAF(No.U1630249)and Science Challenge Project(No.TZ2016002).
  • 相关文献

参考文献2

共引文献2

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部