期刊文献+

Convergent Overdetermined-RBF-MLPG for Solving Second Order Elliptic PDEs

原文传递
导出
摘要 This paper deals with the solvability and the convergence of a class of unsymmetric Meshless Local Petrov-Galerkin(MLPG)method with radial basis function(RBF)kernels generated trial spaces.Local weak-form testings are done with stepfunctions.It is proved that subject to sufficiently many appropriate testings,solvability of the unsymmetric RBF-MLPG resultant systems can be guaranteed.Moreover,an error analysis shows that this numerical approximation converges at the same rate as found in RBF interpolation.Numerical results(in double precision)give good agreement with the provided theory.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第1期78-89,共12页 应用数学与力学进展(英文)
基金 supported by the CERG Grant of the Hong Kong Research Grant Council and the FRG Grant of the Hong Kong Baptist University.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部