期刊文献+

An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations 被引量:4

原文传递
导出
摘要 Poisson-Nernst-Planck equations are a coupled system of nonlinear partial differential equations consisting of the Nernst-Planck equation and the electrostatic Poisson equation with delta distribution sources,which describe the electrodiffusion of ions in a solvated biomolecular system.In this paper,some error bounds for a piecewise finite element approximation to this problem are derived.Several numerical examples including biomolecular problems are shown to support our analysis.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第1期113-130,共18页 应用数学与力学进展(英文)
基金 supported by the China NSF(NSFC 11001062,NSFC 11161014) the fund from Education Department of Guangxi Province under grant 201012MS094 B.Z.Lu was supported by the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciences and the China NSF(NSFC10971218).
  • 相关文献

同被引文献22

  • 1陆金甫 关治.偏微分方程数值解法[M].北京:清华大学出版社,1985.145-209.
  • 2Yan Ningning,Zhou Aihui. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes[J]. Computer methods in applied mechanics and engineering, 2001,190: 4289-4299.
  • 3Chen Long,Holst M,Xu Jinchao. The finite element approximation of the nonlinear Poisson-Bohzmann equation[J]. SIAM Journal on Numerical Analysis, 2007,45 (6): 2298-2320.
  • 4Hintermuller M, Hinze M, Kahle C. An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/ Navier-Stokes system[J]. Journal of Computational Physics,2012,235 :810- 827.
  • 5陆金甫,关治.偏微分方程数仇解法[M].北京:清华大学出版社,2003:228-232.
  • 6Yang Ying,Cheng J ie, Lu Benzhuo,et al. Parallel adaptive finite element algorithms for solving the coupled electro-diffusion equations[J]. Journal of Computational Physics, 2012 : 1-26.
  • 7Lu Benzhuo, Hoist M J, McCammon A, et al. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reac- tion processes I :finite element solutions[J]. Journal of Computational Physics, 2010,229;6979-6994.
  • 8l.u B, Hoist M J, McCammon A, et al. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I : finite element solutions[J]. Journal of Computational Physics, 2010,229 : 6979-6994.
  • 9Prudhomme S,Oden J T. On goal-oriented error estimation for elliptic problems: application to the control of pointwise er- rors[J]. Computer Methods in Applied Mechanics and Engineering,1999,176:313-331.
  • 10Oden J T, Prudhomme S. Goal-oriented error estimation and adaptivity for the finite element method[J]. Computers and Mathematics with Applications,2001,41:735-756.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部