摘要
Numerical instability may occur when simulating high Reynolds number flows by the lattice Boltzmann method(LBM).The multiple-relaxation-time(MRT)model of the LBM can improve the accuracy and stability,but is still subject to numerical instability when simulating flows with large single-grid Reynolds number(Reynolds number/grid number).The viscosity counteracting approach proposed recently is a method of enhancing the stability of the LBM.However,its effectiveness was only verified in the single-relaxation-time model of the LBM(SRT-LBM).This paper aims to propose the viscosity counteracting approach for the multiple-relaxationtime model(MRT-LBM)and analyze its numerical characteristics.The verification is conducted by simulating some benchmark cases:the two-dimensional(2D)lid-driven cavity flow,Poiseuille flow,Taylor-Green vortex flow and Couette flow,and threedimensional(3D)rectangular jet.Qualitative and Quantitative comparisons show that the viscosity counteracting approach for the MRT-LBMhas better accuracy and stability than that for the SRT-LBM.
基金
supported by the National Natural Science Foundation of China(NSFC,Grant Numbers 10572106,10872153 and 11172219)
the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130141110013).