期刊文献+

Finite Elementθ-Schemes for the Acoustic Wave Equation

原文传递
导出
摘要 In this paper,we investigate the stability and convergence of a family of implicit finite difference schemes in time and Galerkin finite element methods in space for the numerical solution of the acoustic wave equation.The schemes cover the classical explicit second-order leapfrog scheme and the fourth-order accurate scheme in time obtained by the modified equation method.We derive general stability conditions for the family of implicit schemes covering some well-known CFL conditions.Optimal error estimates are obtained.For sufficiently smooth solutions,we demonstrate that the maximal error in the L^(2)-norm error over a finite time interval converges optimally as O(h^(p+1)+∆t^(s)),where p denotes the polynomial degree,s=2 or 4,h the mesh size,and∆t the time step.
作者 Samir Karaa
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2011年第2期181-203,共23页 应用数学与力学进展(英文)
基金 Sultan Qaboos University under Grant IG/SCI/DOM S/09/09.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部