期刊文献+

Convergence Analysis of the Spectral Methods for Weakly Singular Volterra Integro-Differential Equations with Smooth Solutions 被引量:4

原文传递
导出
摘要 The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth.We provide a rigorous error analysis for the spectral methods,which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L^(∞)-norm and weighted L^(2)-norm.The numerical examples are given to illustrate the theoretical results.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第1期1-20,共20页 应用数学与力学进展(英文)
基金 This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008) National Science Foundation of China(10971074).
  • 相关文献

同被引文献21

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部