期刊文献+

On Lateral-Torsional Buckling of Non-Local Beams

原文传递
导出
摘要 Nonlocal continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with micro-or nanostructures.This paper deals with the lateral-torsional buckling of elastic nonlocal small-scale beams.Eringen’s model is chosen for the nonlocal constitutive bendingcurvature relationship.The effect of prebuckling deformation is taken into consideration on the basis of the Kirchhoff-Clebsch theory.It is shown that the application of Eringen’s model produces small-length scale terms in the nonlocal elastic lateraltorsional buckling moment of a hinged-hinged strip beam.Clearly,the non-local parameter has the effect of reducing the critical lateral-torsional buckling moment.This tendency is consistent with the one observed for the in-plane stability analysis,for the lateral buckling of a hinged-hinged axially loaded column.The lateral buckling solution can be derived from a physically motivated variational principle.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2010年第3期389-398,共10页 应用数学与力学进展(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部