期刊文献+

Nonlinear Vibrations of Two-Span Composite Laminated Plates with Equal and Unequal Subspan Lengths

原文传递
导出
摘要 The nonlinear transverse vibrations of ordered and disordered twodimensional(2D)two-span composite laminated plates are studied.Based on the von Karman’s large deformation theory,the equations of motion of each-span composite laminated plate are formulated using Hamilton’s principle,and the partial differential equations are discretized into nonlinear ordinary ones through the Galerkin’s method.The primary resonance and 1/3 sub-harmonic resonance are investigated by using the method of multiple scales.The amplitude-frequency relations of the steady-state responses and their stability analyses in each kind of resonance are carried out.The effects of the disorder ratio and ply angle on the two different resonances are analyzed.From the numerical results,it can be concluded that disorder in the length of the two-span 2D composite laminated plate will cause the nonlinear vibration localization phenomenon,and with the increase of the disorder ratio,the vibration localization phenomenon will become more obvious.Moreover,the amplitude-frequency curves for both primary resonance and 1/3 sub-harmonic resonance obtained by the present analytical method are compared with those by the numerical integration,and satisfactory precision can be obtained for engineering applications and the results certify the correctness of the present approximately analytical solutions.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2017年第6期1485-1505,共21页 应用数学与力学进展(英文)
基金 This research is supported by the National Natural Science Foundation of China(Nos.11572007 and 11172084).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部