期刊文献+

基于深度学习的视觉里程计方法综述 被引量:1

Review of Visual Odometry Methods Based on Deep Learning
下载PDF
导出
摘要 视觉里程计(visual odometry,VO)是处理搭载视觉传感器的移动设备定位问题的一种常用方法,在自动驾驶、移动机器人、AR/VR等领域得到了广泛应用。与传统基于模型的方法相比,基于深度学习的方法可在不需显式计算的情况下从数据中学习高效且鲁棒的特征表达,从而提升其对于光照变化、少纹理等挑战性场景的鲁棒性。简略回顾了基于模型的视觉里程计方法,从监督学习方法、无监督学习方法、模型与学习融合方法、常用数据集、评价指标、模型法与深度学习方法对比分析六个方面全面介绍了基于深度学习的视觉里程计方法。指出了基于深度学习视觉里程计仍存在的问题和未来的发展趋势。 Visual odometry(VO)is a common method to deal with the positioning of mobile devices equipped with vision sensors,and has been widely used in autonomous driving,mobile robots,AR/VR and other fields.Compared with tradi-tional model-based methods,deep learning-based methods can learn efficient and robust feature representations from data without explicit computation,thereby improving their ability to handle challenging scenes such as illumination changes and less textures.In this paper,it first briefly reviews the model-based visual odometry methods,and then focuses on six aspects of deep learning-based visual odometry methods,including supervised learning methods,unsupervised learning methods,model-learning fusion methods,common datasets,evaluation metrics,and comparison of models and deep learning methods.Finally,existing problems and future development trends of deep learning-based visual odometry are discussed.
作者 职恒辉 尹晨阳 李慧斌 ZHI Henghui;YIN Chenyang;LI Huibin(School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第20期1-15,共15页 Computer Engineering and Applications
基金 教育部-中国移动人工智能建设项目(MCM20190701) 国家自然科学基金面上项目(61976173)。
关键词 视觉里程计 深度学习 位姿估计 V-SLAM visual odometry deep learning pose estimation V-SLAM
  • 相关文献

参考文献7

二级参考文献69

  • 1SCARAMUZZA D, FRAUNDORFER F. Visual odometry ( part I : the first 30 years and fundamentals) [ J]. IEEE Robotics & Automation Magazine,2011,18(4) :80-92.
  • 2CHENG Yang, MAIMONE M W, MATTHIES L. Visual odometry on the mars exploration rovers: a tool to ensure accurate driving and science imaging [ J]. IEEE Robotics & Automation Magazine, 2006,13(2) :54-62.
  • 3MAIMONE M, CHENG Yang, MATTHIES L. Two years of visual odometry on the mars exploration myers:field reports [ J ]. Journal ofField Robotics ,2007,24 ( 3 ) : 169-186.
  • 4KELLY J, SUKHATME G S. An experimental study of aerial stereo visual odometry[ C]//Proc of the 6th IFAC Symposium on Intelligent Autonomous Vehicles. 2007.
  • 5CORKE P, DETWEILER C, DUNBABIN M, et al. Experiments with underwater robot localization and tracking [ C ]//Proc of International Conference on Robotics and Automation. 2007:4556-4561.
  • 6Da COSTA B S S,DREWS P,OLIVEIRA G L,et al. Visual odometry and mapping for underwater autonomous vehicles [ C]//Proe of the 6th Latin American Robotics Symposium. 2009:1-6.
  • 7DORNHEGE C, KLEINER A. Visual odometry for tracked vehicles [ C]//Proc of IEEE International Workshop on Safety, Security and Rescue Robotics. 2006.
  • 8AGRAWAL M, KONOLIGE K. Rough terrain visual odometry [ C ]// Proc of International Conference on Advanced Robotics. 2007.
  • 9KONOLIGE K, AGRAWAL M, SOLar J. Large-scale visual odometry for rough terrain[ C]//Proc of the 13th International Symposium on Robotics Research. 2011 : 201- 212.
  • 10HOWARD A. Real-time stereo visual odometry for autonomous ground vehicles[ C ]//Proc of IEEE/RSJ International Conference on Intelli- gent Robots and Systems. 2008:3946-3952.

共引文献152

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部