期刊文献+

多智能体路径规划综述 被引量:13

Overview of Multi-Agent Path Finding
下载PDF
导出
摘要 多智能体路径规划(multi-agent path finding,MAPF)是为多个智能体规划路径的问题,关键约束是多个智能体同时沿着规划路径行进而不会发生冲突。MAPF在物流、军事、安防等领域有着大量应用。对国内外关于MAPF的主要研究成果进行系统整理和分类,按照规划方式不同,MAPF算法分为集中式规划算法和分布式执行算法。集中式规划算法是最经典和最常用的MAPF算法,主要分为基于A*搜索、基于冲突搜索、基于代价增长树和基于规约四种算法。分布式执行算法是人工智能领域兴起的基于强化学习的MAPF算法,按照改进技术不同,分布式执行算法分为专家演示型、改进通信型和任务分解型三种算法。基于上述分类,比较MAPF各种算法的特点和适用性,分析现有算法的优点和不足,指出现有算法面临的挑战并对未来工作进行了展望。 The multi-agent path finding(MAPF)problem is the fundamental problem of planning paths for multiple agents,where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other.MAPF is widely used in logistics,military,security and other fields.MAPF algorithm can be divided into the centralized planning algorithm and the distributed execution algorithm when the main research results of MAPF at home and abroad are systematically sorted and classified according to different planning methods.The centralized programming algorithm is not only the most classical but also the most commonly used MAPF algorithm.It is mainly divided into four algorithms based on A*search,conflict search,cost growth tree and protocol.The other part of MAPF which is the dis-tributed execution algorithm is based on reinforcement learning.According to different improved techniques,the distributed execution algorithm can be divided into three types:the expert demonstration,the improved communication and the task decomposition.The challenges of existing algorithms are pointed out and the future work is forecasted based on the above classification by comparing the characteristics and applicability of MAPF algorithms and analyzing the advantages and disadvantages of existing algorithms.
作者 刘志飞 曹雷 赖俊 陈希亮 陈英 LIU Zhifei;CAO Lei;LAI Jun;CHEN Xiliang;CHEN Ying(College of Command and Control Engineering,Army Engineering University,Nanjing 210007,China;Postdoctoral Research Workstation of Eastern Theater Hospital,Nanjing 210007,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第20期43-62,共20页 Computer Engineering and Applications
基金 国家自然科学基金(61806221)。
关键词 多智能体路径规划 人工智能 搜索 分布式 强化学习 multi-agent path finding artificial intelligence search distributed reinforcement learning
  • 相关文献

参考文献5

二级参考文献40

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2吴靓,何清华,黄志雄,邹湘伏.基于蚁群算法的多机器人集中协调式路径规划[J].机器人技术与应用,2006(3):32-37. 被引量:6
  • 3PARKER L E. Multiple mobile robot systems [ M]//Springer Hand- book of Robotics. Berlin: Springer, 2005:921-941.
  • 4CHARKROBORTY J, MUKHOPADHYAY S. A robust cooperative multi-robot path-planning in noisy environment [ C]// Proceedings of the 2010 IEEE International Conference on Industrial and Infor- mation Systems. Piscataway: IEEE, 2010:626-631.
  • 5JARADAT M, GARIBEH M H, FEILAT E A. Dynamic motion plan- ning for autonomous mobile robot using fuzzy potential field [ C]// Proceedings of the 6tb International Symposium on Meehatronies and Its Applications. Piseataway: IEEE, 2009:24-26.
  • 6GHATEE M, MOHADES A. Motion planning in order to optimize the length and clearance applying a Hopfield neural network [ J]. Expert Systems with Applications, 2009, 36(3): 4688 -4695.
  • 7BARTO A G, MAHADEVEN S. Recent advance in hierarchical reinforcement learning [ J]. Discrete Event Dynamic Systems, 2003, 13(4): 341 -379.
  • 8SABATFIN L, SECCHI C, FANTUZZI C. Arbitrarily shaped for- mations of mobile robots: artificial potential fields and coordinate transformation [ J]. Autonomous Robots, 2011, 30 (4) : 385 - 397.
  • 9KHATIB O. Real-time obstacle avoidance for manipulators and mo- bile robots [ C]//Proceedings of the 1985 IEEE International Con- ference on Robotics and Automation. Piseataway: IEEE, 1985, 2: 500 - 505.
  • 10LIANG T. A speedup convergent method for multi-Agent reinforce- ment learning [ C]// Proceedings of the 2009 International Confer- ence on Information Engineering and Computer Science. Piscat- away: IEEE, 2009:1-4.

共引文献89

同被引文献132

引证文献13

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部