期刊文献+

系数增强最小二乘回归子空间聚类法 被引量:1

Coefficient Enhanced Least Square Regression Subspace Clustering Method
下载PDF
导出
摘要 针对最小二乘回归子空间聚类法在求解表示系数时忽略了样本相似度的不足,提出改进方法。基于样本相互重构的表示系数矩阵和样本相似度矩阵有很大的关联定义系数增强项,求解可以保持样本相似度的表示系数矩阵,提出系数增强最小二乘回归子空间聚类法。在8个标准数据集上的实验表明该方法可以提高最小二乘回归子空间聚类法的聚类性能。 In view of the fact that the least square regression subspace clustering method ignores the similarity between samples when solving the representation coefficients,an improved method is proposed.Based on the representation coeffi-cient matrix of the sample mutual reconstruction and the similarity matrix of the sample having a great correlation,it defines the coefficient enhancement term to solve the representation coefficient matrix that can preserve sample similarity.Experi-ments on 8 standard data sets show that the proposed method can improve the performance of least square regression sub-space clustering method.
作者 简彩仁 翁谦 夏靖波 JIAN Cairen;WENG Qian;XIA Jingbo(School of Information Science&Technology,Tan Kah Kee Colleage,Xiamen University,Zhangzhou,Fujian 363105,China;College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第20期73-78,共6页 Computer Engineering and Applications
基金 国家自然科学基金(41801324) 福建省自然科学基金(2019J01244,2018J07005)。
关键词 最小二乘回归 子空间聚类 系数增强 高维数据 least square regression subspace clustering coefficient enhanced high dimensional data
  • 相关文献

参考文献3

二级参考文献52

  • 1Brown PO, Botstein D. Exploring the New World of the Genome with DNA Microarrays. Nature Genetics, 1999, 21(zl): 33-37.
  • 2Bolon-Canedo V, sanchez-MarooN, Alonso-Betanzos A. An Ensemble of Filters and Classifiers for Microarray Data Classification. Pattern Hecognition , 2012, 45 ( I ) : 531-539.
  • 3Zheng C H, Zhang L, Ng T Y, et at. Metasample-Based Sparse Representation for Tumor Classification. IEEE/ ACM Trans on Computational Biology and Bioinformatics, 2011,8(5): 1273-1282.
  • 4de Souto M C P, Costa I G, de Araujo D SA, et at. Clustering Cancer Gene Expression Data: A Comparative Study. BMC Bioinformatics , 2008, 9 ( I ) : 497 - 510.
  • 5Bayo A E, Granillo P M. Clustering Gene Expression Data with a Penalized Graph-Based Metric. BMC Bioinformatics, 2011, 12 (1):2-19.
  • 6WangJ J Y, Wang X L, Gao X. Non-negative Matrix Factorization by Maximizing Correntropy for Cancer Clustering. BMC Bioinfonnatics, 2013,14(1): 107-117.
  • 7Richards A L, Holmans P, O'Donovan M C, et at. A Comparison of Four Clustering Methods for Brain Expression Microarray Data. BMC Bioinformatics , 2008, 9 ( I) : 490-506.
  • 8Jiang D X, Tang C, Zhang A D. Cluster Analysis for Gene Expression Data: A Survey. IEEE Trans on Knowledge and Data Engineering, 2004, 16( II): 1370-1386.
  • 9Golub T R, Slonim D K, Tamayo P, et at. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, 1999,286(5439): 531-537.
  • 10Eisen M B, Spellman P T, Brown PO, et al, Cluster Analysis and Display of Genome-Wide Expression Patterns. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(25) : 14863-14868.

共引文献21

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部