期刊文献+

基于长短期记忆网络的电网概率潮流计算及态势感知 被引量:2

Probabilistic Power Flow Calculation and Situation Awareness Based on Long Short Term Memory Network
下载PDF
导出
摘要 可再生能源发电大量地并入电力系统发输配用各个部分,使配电网呈现主动性,由于电力系统发电的随机性、波动性特点,使潮流大小无法准确预估。对此,提出了基于长短期记忆网络的电网概率潮流预估及态势感知方法。在前人研究的基础上,提出了风力发电、光伏发电、需求侧负荷、电动汽车充电、发电机组的功率概率模型;进一步,基于Nataf方法将多种概率模型进行去相关标准正态分布变换,实现发电负荷的统一;然后,建立了多方协调互补、成本最小的概率调度模型,并使用长短期记忆网络进行概率潮流求解;最后,以某实际电网为例,对所提算法进行验证比较,证明了所提方法的有效性。 A large number of renewable energy power generation are incorporated into various parts of power system transmission and distribution,which makes the distribution network active.Due to the randomness and volatility of power generation in the power system,the power flow cannot be accurately estimated.Therefore,a probabilistic power flow prediction and situation awareness method based on long short-term memory network is proposed.On the basis of previous studies,the power probability models of wind power generation,photovoltaic power generation,demand side load,electric vehicle charging and generator set are proposed.Furthermore,based on Nataf method,decorrelation standard normal distribution transformation is carried out for various probability models to realize the unification of generation load.Then,a probabilistic scheduling model with multi-party coordination and complementarity and minimum cost is established,and the probabilistic power flow is solved by using long short-term memory network.Finally,an actual power grid is taken as an example to verify and compare the proposed algorithm,which shows the effectiveness of the proposed method.
作者 蔡新雷 董锴 崔艳林 邱丹骅 孟子杰 CAI Xinlei;DONG Kai;CUI Yanlin;QIU Danhua;MENG Zijie(Power Dispatching Control Center of Guangdong Power Grid Co.,Ltd.,Guangzhou Guangdong 510600,China)
出处 《电子器件》 CAS 北大核心 2022年第4期939-946,共8页 Chinese Journal of Electron Devices
基金 中国南方电网有限责任公司科技项目(036000KK52190002)。
关键词 长短期记忆网络 概率潮流 可再生能源发电 调度 态势感知 long and short term memory network probabilistic power flow renewable energy power generation dispatching situational awareness
  • 相关文献

参考文献13

二级参考文献163

  • 1魏绍凯,谢明,郑叔芳.叶型曲线的自适应分段回归[J].中国电机工程学报,1993,13(4):52-56. 被引量:7
  • 2迟永宁,刘燕华,王伟胜,陈默子,戴慧珠.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81. 被引量:500
  • 3汪皓,吴文传,张伯明,潘坚跃.基于可信性理论的模糊潮流方法[J].电力系统自动化,2007,31(17):21-25. 被引量:17
  • 4Miao F, Vittal V, Heydt G T, et al. Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants[J]. IEEE Trans. on Power Systems, 2012, 27(4): 2251-2261.
  • 5PeiZ, Lee S T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion[J]. IEEE Trans. on Power Systems, 2004,. 19(I): 676-682.
  • 6Hong H P. An efficient point estimate method forprobabilistic analysis[J]. Reliability Engineering & System Safety, 1998, 59(3): 261-267.
  • 7Chun-Lien S, Chan-Nan L. Two-point estimate method for quantifying transfer capability uncertainty[J]. IEEE Trans. on PowerSystems, 2005, 20(2): 573-579.
  • 8Chen X, Tung Y. Investigation of polynomial normal transform[J]. Structural Safety, 2003, 25(4): 423-445.
  • 9Stroud A H, Approximate calculation of multiple integrals [M]. New Jersey: Prentice-HallPress, 1971: 315-329.
  • 10Abouzabr I, Ramakumar R. Loss of power supply probability of stand-alone photovoltaic systems: A closed form solution approach[J]. IEEE Trans. on Energy Conversion, 1991, 6(1): 1-11.

共引文献246

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部