期刊文献+

基于改进PSO-SVR模型的港口潮汐预报算法 被引量:1

Port tide forecasting algorithm based on improved PSO-SVR model
下载PDF
导出
摘要 基于调和分析的传统潮汐预测方法仅考虑了引潮力引起的线性因素,忽略了风力、气压等非线性因素的影响,因此存在预测精度不高的问题。为了解决上述问题,本文提出一种粒子群算法(Particle Swarm Optimization, PSO)优化支持向量回归(Support Vector Regression, SVR)模型的港口潮汐预报算法。首先,采用SVR对港口潮汐水位变化进行建模,针对SVR核参数和惩罚因子设置难题,利用PSO算法进行全局寻优,自动确定SVR最优参数组合;其次,为了解决PSO算法易早熟,迭代后期计算效率下降的问题,在PSO算法中加入变异因子,提升算法效率;最后,利用伊莎贝尔(Isabel)港口潮汐数据进行仿真验证。结果表明,相较于单一调和分析模型和SVR模型,该方法的预测性能和鲁棒性均更高,具有良好的应用前景。 Traditional tidal prediction methods based on harmonic analysis include only the linear factors caused by tidal force, and ignore the influence of wind, pressure and other nonlinear factors. In order to solve this problem, a port tide forecasting algorithm based on support vector regression(SVR) model optimized by particle swarm optimization(PSO) is proposed in this paper. Firstly, SVR is used to model the change of port tidal water level. As it is difficult to set the SVR kernel parameters and penalty factors, the PSO algorithm is used for global optimization to determine the optimal parameter combination of SVR automatically. Secondly, in order to solve the problem of premature convergence of PSO algorithm and to improve computational efficiency in the later iteration, mutation factor is added to PSO algorithm to improve the efficiency of the algorithm. Finally, the tidal data of Isabel port is used for simulation verification. The results show that the proposed method can get higher prediction performance and robustness than the single harmonic analysis model and SVR model, and has good application prospects.
作者 刘延 LIU Yan(Guangzhou Nanfang Satellite Navigation Instrument Co.,Ltd.,Guangzhou,Guangdong 510000,China)
出处 《测绘技术装备》 2022年第3期56-61,共6页 Geomatics Technology and Equipment
关键词 潮汐预测 支持向量回归 粒子群算法 模型优化 tide prediction SVR PSO model optimization
  • 相关文献

参考文献5

二级参考文献31

  • 1张作一,王瑞荣,王建中,薛安克,谢发权,何晓洪,孙映宏.基于前馈神经网络的潮汐预报[J].杭州电子科技大学学报(自然科学版),2010,30(4):17-21. 被引量:5
  • 2文新辉,陈开周.一种基于神经网络的非线性时间序列模型[J].西安电子科技大学学报,1994,21(1):73-78. 被引量:10
  • 3李明昌,梁书秀,孙昭晨.人工神经网络在潮汐预测中应用研究[J].大连理工大学学报,2007,47(1):101-105. 被引量:20
  • 4HaykinS 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 5DARWIN G H.On an apparatus for facilitating the reduction of tidal observations[J].Proc Royal Soc London A,1892,52:345-376
  • 6DOODSON A T.The analysis of observations[J].Phil Trans Roy,1928,A265:223-279
  • 7YEN P H,JAN C D,LEE Y P,et al.Application of Kalman filter to short-term tide level prediction[J].J Waterway Port Coastal Ocean Eng,1996,122(5):226-231.
  • 8TSAI C P,LEE T L.Back-propagation neural network in tidal-level forecasting[J].J Waterway Port Coastal Ocean Eng,1999,125(4):195-202
  • 9LEE T L,JENG D S.Application of artificial neural networks in tide forecasting[J].Ocean Eng,2002,29(9):1003-1022
  • 10TSAI C P,LIN C,SHEN J N.Neural network for wave forecasting among multi-stations[J].Ocean Eng,2002,29(13):1683-1695

共引文献32

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部