摘要
目的原子力显微镜压痕技术确定的大鼠小梁网组织弹性模量结果显示,不同压入部位弹性模量值存在较大的差别,为分析差别产生的原因,本文利用有限元方法模拟小梁网组织压入力学行为。方法首先基于大鼠小梁网组织共聚焦断层图像,经重建获取小梁网组织的三维结构模型,给出适用于描述大鼠小梁网组织力学特性的一阶Ogden模型参数;然后利用有限元分析模拟压痕实验获取不同位置处小梁网组织弹性模量。结果构建了大鼠小梁网组织三维结构模型,给出了模拟原子力显微镜压痕实验的一阶Ogden模型参数,有限元模拟获取了不同压入位置处的小梁网组织弹性模量范围为38~1300 Pa。结论一阶Ogden模型适用于小梁网组织压痕实验模拟。
Objective There is a large deviation between the elastic modulus of rat trabecular meshwork determined by atomic force microscope indentation technique.In order to analyze the causes of the deviation,the finite element method is used to simulate the indentation mechanical behavior of trabecular meshwork.Methods First,based on the confocal sectional image of rat trabecular meshwork tissue,the three-dimensional structure model of trabecular meshwork tissue was obtained.The parameters of the first-order Ogden model suitable for describing the mechanical properties of rat trabecular meshwork were given.Then,finite element analysis was used to simulate the indentation experiment to obtain the elastic modulus of trabecular meshwork at different positions.Results The three-dimensional structure model of rat trabecular meshwork was constructed,and the parameter of the first-order Ogden model was given.The elastic modulus of trabecular meshwork at different indentation positions was obtained by finite element simulation,ranging from 38 to 1300 Pa.Conclusions The first-order Ogden model is suitable for the experimental simulation of trabecular meshwork tissue indentation.
作者
王川
董建鑫
张静
李林
刘志成
WANG Chuan;DONG Jianxin;ZHANG Jing;LI Lin;LIU Zhicheng(Yanjing Medical College,Capital Medical University,Beijing 101300;School of Medical Imaging,Xuzhou Medical University,Xuzhou,Jiangsu Province 221004;School of Biomedical Engineering,Capital Medical University,Beijing 100069;Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application,Beijing 100069)
出处
《北京生物医学工程》
2022年第5期454-457,464,共5页
Beijing Biomedical Engineering
基金
国家自然科学基金(31570952、31370952)资助。
关键词
小梁网组织
弹性模量
有限元分析
压痕实验
Hertz模型
trabecular meshwork
elastic modulus
finite element analysis
indentation technique
Hertz model