期刊文献+

基金项目学部分部的交叉网络分析——以美国NSF数据中AI领域为例 被引量:1

Network Analysis of Inter-Division in Funding Projects:Case Studies of AI Field in NSF Data
下载PDF
导出
摘要 本文旨在通过探究基金资助项目研究的交叉融合状况与趋势,从学部分部内容交叉层面探究基金投入对交叉研究的引导方向、影响特征及演化作用。本文组合共词网络分析和学科交叉研究等方法,从基金学部分部内在知识的聚合和基金分部间知识的交叉两个维度,构建对分部内部知识发展状况及分部间交叉态势的分析框架和测度方法。研究结果表明,以美国NSF (National Science Foundation)数据中AI (artificial intelligence)领域为例,该领域在基金投入引导下,随着年代递进,不同分部受资助项目数量增加,主题多样性增加,分部内部知识聚合程度降低,分部间交叉融合程度增强,同时分部内部知识聚合程度和分部间交叉融合程度均出现了明显分化;NSF分部的知识交叉集中在有相同或相似的理论方法的学科框架之下,表明知识实现近距离交叉融合更容易;内部知识的聚合性与外部知识的交叉程度具有一定的关联性。 This study aims to explore the funding direction,influence,characters,and evolution of a crossing study from the perspective of division by analyzing the research fusion and trends of funding projects.A co-word network analysis is combined with interdisciplinary research methods to construct an analysis framework and a measurement principle with an aim to discover the development of the inner-division knowledge and the inter-division research trends from the dimensions of the inner-division compactness of co-word networks and the intersection of inter-division knowledge.The results show that,over time,as per the National Science Foundation(NSF) data,both the number of projects and the diversity of topics in the different divisions of the artificial intelligence(AI) field are increasing.Further,from the two dimensions,the degree of inner-division compactness keeps decreasing while the intersection of inter-division knowledge intensifies,and there exists an obvious polarization between them.Moreover,the intersecting content of NSF’s different divisions is concentrated in the topics with the same or similar theoretical methods,which indicates that it is easier to realize cross-integration for similar knowledge,and there exists some relationship between the inner-division compactness of co-word networks and the crossing and integration of inter-division knowledge.
作者 杨洁 王曰芬 陈必坤 恢光平 Yang Jie;Wang Yuefen;Chen Bikun;Hui Guangping(School of Economics&Management,Nanjing University of Science&Technology,Nanjing 210094;Management School of Tianjin Normal University,Tianjin 300387;Institute for Big Data Science,Tianjin Normal University,Tianjin 300387;School of Social Science,Soochow University,Suzhou 215021)
出处 《情报学报》 CSSCI CSCD 北大核心 2022年第9期945-955,共11页 Journal of the China Society for Scientific and Technical Information
基金 国家社会科学基金重大项目“面向知识创新服务的数据科学理论与方法研究”(16ZDA224)。
关键词 交叉研究 网络分析 交叉演化 美国国家科学基金 人工智能 interdisciplinary research network analysis cross evolution National Science Foundation artificial intelligence
  • 相关文献

参考文献13

二级参考文献276

共引文献479

同被引文献26

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部