期刊文献+

关于广义i阶宽度积分的逆Brunn-Minkowski型不等式

On Reverse Brunn-Minkowski Type Inequalities for Generalized Width-Integral of Index
下载PDF
导出
摘要 研究广义i阶宽度积分,利用逆的H?lder 不等式给出广义i阶宽度积分的 Brunn-Minkowski型不等式和Beckenbach-Dresher’s型不等式,同时给出广义弦长积分的类似结论. This paper studies the generalized width-integral of index i and obtains the Brunn-Minkowski type inequality and Beckenbach-Dresher’s type inequality with the help of reverse H?lder’s inequality,and draws the similar conclusion of the generalized chord-integrals.
作者 杨林 谭杨 罗淼 Yang Lin;Tan Yang;Luo Miao(School of Information Technology,Tongren Polytechnic College,Tongren 554300,China;School of Mathematics Science,Guizhou Normal University,Guiyang 550025,China)
出处 《黑河学院学报》 2022年第8期184-185,共2页 Journal of Heihe University
基金 2019年度贵州省基础研究计划“高维欧氏空间中Minkowski不等式研究”(黔科合基础﹝2019﹞1228号) 铜仁市科技计划项目“基于白噪声和Lévy跳的新冠肺炎传播的随机动力学模型研究”(铜仁市科研﹝2020﹞116号)。
关键词 H?lder不等式 MINKOWSKI不等式 Brunn-Minkowski型不等式 Beckenbach-Dresher’s型不等式 H?lder’s inequality Minkowski’s inequality Brunn-Minkowski type inequality Beckenbach-Dresher’s type inequality
  • 相关文献

参考文献3

二级参考文献15

  • 1LENG Gangsong, ZHAO Changjian, HE Binwu & LI XiaoyanDepartment of Mathematics, Shanghai University, Shanghai 200436, China,Department of Mathematics, Binzhou Teachers College, Binzhou 256604, China.Inequalities for polars of mixed projection bodies[J].Science China Mathematics,2004,47(2):175-186. 被引量:9
  • 2李小燕,何斌吾.对偶Brunn-Minkowski-Firey定理[J].数学杂志,2005,25(5):545-548. 被引量:6
  • 3LUTWAK E. Dual Mixed Volumes I-J]. Pac J Math, 1975, 58(2) : 531-538.
  • 4LUTWAK E. Intersection Bodies and Dual Mixed Volumes [J]. Adv Math, 1988, 71(2) .. 232-261.
  • 5LUTWAK E. Centroid Bodies and Dual Mixed Volumes FJ]. Proc London Math Soc, 1990, 60(2).. 365-391.
  • 6SCHNEIDER R. Convex Bodies: The Brunn-Minkowski Theory [M]. 2th ed. New York: Cambridge Univ Press, 2014.
  • 7GRINBERG E, ZHANG G. Convolutions, Transforms, and Convex Bodies EJ]. Proc London Math Soc, 1999, 78(3): 77-115.
  • 8HABERL C. Lp Intersection Bodies I-J]. Adv Math, 2008, 217(6) : 2599-2624.
  • 9WANG W D, LENG G S. Lp-Dual Mixed Quermass Integrals [J]. Indian J Pure Appl Math, 2005, 36(4) : 177-188.
  • 10HARDY G, LITTLEWOOD J, POLYA G. Inequalities [M]. New York: Cambridge Univ Press, 1934.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部