期刊文献+

基于惩罚似然比的高维空间相关过程EWMA质量监控模型 被引量:3

Quality Monitoring EWMA Model Based on Penalized Likelihood Ratio in High-dimensional Correlated Process
下载PDF
导出
摘要 变量选择控制图是高维统计过程监控的重要方法。针对传统变量选择控制图较少考虑高维过程空间相关性而造成监控效率低的问题,提出一种基于Fused-LASSO的高维空间相关过程监控模型。首先,利用Fused LASSO算法对似然比检验进行改进;然后,推导出基于惩罚似然比的监控统计量;最后,通过仿真模拟和真实案例分析所提监控模型的性能。仿真实验和真实案例均表明:在高维空间相关过程中,当相邻监控变量同时发生异常时,利用所提监控方法能够准确识别潜在异常变量,取得较好的监控效果。 In traditional variable selection control chart domain,the spatial correlation problem among high-dimensional process is rarely considered.For solving this problem,a high-dimensional spatially correlated process monitoring model based on Fused LASSO algorithm is proposed.First,the Fused LASSO method is applied to optimize the likelihood ratio test.Then,the control limit of proposed model is obtained from Monte Carlo simulations.Finally,the performance of proposed model is compared with VS-MEWMA control chart through both simulations and real example.The results show that the proposed monitoring model outperforms the alternative method in high-dimensional process when the adjacent variables are spatially correlated,since the potential abnormal variables can be captured accurately by proposed method.
作者 张帅 杨剑锋 刘玉敏 靳琳琳 ZHANG Shuai;YANG Jian-feng;LIU Yu-min;JIN Lin-lin(School of Management Engineering,Henan University of Engineering,Zhengzhou 451191,China;School of Business,Zhengzhou University,Zhengzhou 450001,China;School of Business,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2022年第9期140-146,共7页 Operations Research and Management Science
基金 国家自然科学基金资助项目(U1904211,71672182) 国家社科基金资助项目(20BTJ059) 教育部人文社科基金资助项目(21YJC630151) 河南工程学院博士基金资助项目(Dsk2020002)。
关键词 变量选择 Fused LASSO 高维过程 EWMA控制图 variable selection fused LASSO high-dimensional process EWMA control chart
  • 相关文献

参考文献4

二级参考文献29

  • 1Zou C, Tsung F, Wang Z. Monitoring profiles based on nonparametric regression method. Technometrics, 2008: 50:512-526.
  • 2Qiu P, Zou C, Wang Z. Nonparametric profile monitoring by mixed modeling (with discussions). Technometrics, 2010,52: 265-277.
  • 3Fan J, Gijbels I. Local Polynomial Modeling and its Applications. London: Chapman and Hall, 1996.
  • 4Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Amer Statist Assoc,2001, 96: 1348-1360.
  • 5Zou H. The adaptive lasso and its oracle properties. J Amer Statist Assoc, 2006, 101: 1418-1429.
  • 6Zou H, Hastie T, Tibshirani R. On the "degrees of freedom" of lasso. Ann Statist, 2007, 35, 2173-2192.
  • 7Zou C, Qiu P. Multivariate statistical process control using LASSO. J Amer Statist Assoc, 2009, 104: 1586-1596.
  • 8Lowry C A, Woodall W H, Champ C W, et al. Multivariate exponentially weighted moving average control chart. Technometrics, 1992, 34: 46-53.
  • 9Han D, Tsung F. A generalized EWMA control chart and its comparison with the optimal EWMA, CUSUM and GLR schemes. Ann Statist, 2004, 32: 316-339.
  • 10Zou C, Liu Y, Wang Z. Comparisons of control schemes for monitoring the mean of processes subject to drifts. Metrika,2009, 70: 141-163.

共引文献8

同被引文献21

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部