摘要
水介质的吸收和散射特性致使水下图像存在不同类型的失真,严重影响后续处理的准确性和有效性。目前有监督学习的水下图像增强方法依靠合成的水下配对图像集进行训练,然而由于合成的数据可能无法准确地模拟水下成像的基本物理机制,所以监督学习的方法很难应用于实际的应用场景。该文提出一种基于特征解耦的无监督水下图像增强方法,一方面,考虑获取同一场景下的清晰-非清晰配对数据集难度大且成本高,提出采用循环生成对抗网络将水下图像增强问题转换成风格迁移问题,实现无监督学习;另一方面,结合特征解耦方法分别提取图像的风格特征和结构特征,保证增强前后图像的结构一致性。实验结果表明,该方法可以在非配对数据训练的情况下,能够有效恢复水下图像的颜色和纹理细节。
The absorption and scattering properties of the water medium cause different types of distortion in underwater images,which affects seriously the accuracy and effectiveness of subsequent processing.At present,underwater image enhancement methods with supervised learning rely on synthetic underwater paired image sets for training.However,the supervised learning methods are challenging to apply to practical application scenarios because the synthetic data may not accurately model the underlying physical mechanisms of underwater imaging.An unsupervised underwater image enhancement based on feature disentanglement is proposed.On the one hand,considering the difficulty and high cost of acquiring clear-unclear paired datasets in the same scene,a cycle generative adversarial network is employed to convert the underwater image enhancement problem into a style transfer problem to achieve unsupervised learning.On the other hand,the feature disentanglement method is combined to extract the style features and structure features separately to ensure the structural consistency of the images before and after enhancement.The experimental results show that the method can effectively recover the color and texture details of underwater images in the case of unpaired data training.
作者
刘彦呈
董张伟
朱鹏莅
刘厶源
LIU Yancheng;DONG Zhangwei;ZHU Pengli;LIU Siyuan(Marine Engineering College,Dalian Maritime University,Dalian 116026,China;College of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2022年第10期3389-3398,共10页
Journal of Electronics & Information Technology
基金
国家自然科学基金(51979021,51709028)
辽宁省自然科学基金(2019JH8,10100045)
中央高校基本科研业务费专项资金(3132019317,3132022218)。
关键词
水下图像增强
特征解耦
生成对抗网络
无监督学习
Underwater image enhancement
Feature disentanglement
Generative adversarial network
Unsupervised learning