期刊文献+

Dynamic transport characteristics of side-coupled double-quantum-impurity systems

下载PDF
导出
摘要 A systematic study is performed on time-dependent dynamic transport characteristics of a side-coupled double-quantum-impurity system based on the hierarchical equations of motion.It is found that the transport current behaves like a single quantum dot when the coupling strength is low during tunneling or Coulomb coupling.For the case of only tunneling transition,the dynamic current oscillates due to the temporal coherence of the electron tunneling device.The oscillation frequency of the transport current is related to the step voltage applied by the lead,while temperature T,electron-electron interaction U and the bandwidth W have little influence.The amplitude of the current oscillation exists in positive correlation with W and negative correlation with U.With the increase in coupling t_(12) between impurities,the ground state of the system changes from a Kondo singlet of one impurity to a spin singlet of two impurities.Moreover,lowering the temperature could promote the Kondo effect to intensify the oscillation of the dynamic current.When only the Coulomb transition is coupled,it is found that the two split-off Hubbard peaks move upward and have different interference effects on the Kondo peak at the Fermi surface with the increase in U_(12),from the dynamics point of view.
作者 Yi-Jie Wang Jian-Hua Wei 王一杰;魏建华(Department of Physics,Renmin University of China,Beijing 100872,China)
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期493-501,共9页 中国物理B(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Grant Nos.11774418 and 11374363)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部