期刊文献+

Beam dynamics optimization of very-high-frequency gun photoinjector 被引量:1

下载PDF
导出
摘要 Very-high-frequency(VHF)gun photoinjectors,capable of producing high-brightness and high-repetitionrate electron bunches,are some of the best electron sources for driving MHz-class repetition-rate free-electron lasers.In this study,the beam dynamics optimization of a VHF gun photoinjector for Shanghai HIgh Repetition Rate X-ray Free Electron Laser and Extreme Light Facility(SHINE)is systematically demonstrated using a genetic algorithm.Through the inclusion of the solenoid geometry as an optimization variable into the genetic algorithm,the optimum projected normalized emittance for 100 pC bunches with bunch length of 1 mm rms is reduced to 0.1 mm mrad for 100%of the particles and 0.075 mm mrad for 95%of the particles,proving that sub-100 nm emittance can be achieved in the SHINE injector using a single-cell Tsinghua University(THU)VHF gun.This emittance fulfills the requirements not only of SHINE and Linac Coherent Light Source(LCLS)-II but also of LCLS-II-High Energy(LCLS-II-HE).We demonstrate that the optimal emittance in the VHF gun injector is reduced via the optimization of the solenoid geometry,thereby reducing solenoid spherical aberration.Through the inclusion of high-order(H.O.)energy spread among the optimization objectives,the H.O.energy spread can be reduced by a factor of nearly six using a high-harmonic cavity despite a 38%emittance growth.Finally,the beam dynamics in the SHINE main accelerator show that reducing the H.O.energy spread in the injector is of great significance to improving compression efficiency and reducing bunch current spike.
出处 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第9期80-92,共13页 核技术(英文)
  • 相关文献

参考文献3

二级参考文献4

共引文献4

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部