摘要
The self-consistent quadruple potential is deduced within the relativistic mean-field(RMF)framework and substituted into the Hamiltonian,which is calculated using the complex momentum representation(CMR).Considering even-even titanium isotopes as an example,this study investigated various properties,including the resonant states of neutron-rich nuclei in the RMF-CMR model,and used them to describe the binding energy.The abrupt decrease in the two-neutron separation energy(S_(2n))corresponds to the traditional magic number.The resonant and bound states are simultaneously exposed in the complex moment plane,where the continuum is along the integration contour.The four oblate neutron-rich nuclei^(72-78)Ti are weakly bound or resonant because their Fermi energies are approximately 0 MeV.The root-meansquare(RMS)radii of these nuclei increase suddenly compared with those of others(neutron number N<48).Moreover,^(78)Ti and^(76)Ti are determined as drip-line nucleons by the value of S_(2n) and the energy levels,respectively.Finally,the weak-bounded character can be represented by diffuse density probability distributions.
基金
the National Natural Science Foundation of China(Nos.11935001 and 11875070)
Natural Science Foundation of Anhui Province(No.1908085MA16).