期刊文献+

优化预训练模型的小语料中文文本分类方法 被引量:1

A Small-Corpus Chinese Text Classification Method for Optimizing Pre-trained Models
下载PDF
导出
摘要 针对GloVe、BERT模型生成的字向量在小语料库中表义不足的问题,提出融合向量预训练模型,对小语料中文短文本分类的精确度进行提升。本文以今日头条新闻公开数据集为实验对象,使用GloVe、BERT模型通过领域预训练,对GloVe与BERT生成的预训练字向量进行向量融合,实现语义增强,从而提升短文本分类效果。结果表明,当语料库中的数据量为500时,融合字向量的准确度相较于BERT字向量的准确度提升了5个百分点,相较于GloVe字向量的准确度提升了3个百分点。词义选取的维度待进一步加强。本文所提方法能够对小语料库的短文本数据实现精准分类,对后续文本挖掘工作具有重要意义。 Aiming at the problem of insufficient representation of word vectors generated by GloVe and BERT models in small corpora,a fusion vector pre-training model was proposed to improve the accuracy of Chinese short text classification in small corpora.Taking today’s headline public data set as the experimental object,using GloVe and BERT models through domain pretraining,vector fusion of pre-trained word vectors generated by GloVe and BERT to achieve semantic enhancement,thereby improving the short text classification effect.When the amount of data in the corpus is 500,the accuracy of the fused word vector is improved by 5 percentage points compared to the accuracy of the BERT word vector,and the accuracy of the GloVe word vector is improved by 3 percentage points.The dimension of word meaning selection needs to be further strengthened.The proposed method can accurately classify short text data in small corpus,which is of great significance for subsequent text mining work.
作者 陈蓝 杨帆 曾桢 Chen Lan;Yang Fan;Zeng Zhen(School of Information,Guizhou University of Finance and Economics,Guiyang 550000)
出处 《现代计算机》 2022年第16期1-8,15,共9页 Modern Computer
基金 教育部产学合作协同育人项目(BZX1902-20):基于Jupyter Notebook的用户信息行为分析整合实验教学设计。
关键词 BERT GLOVE 向量融合 小语料 短文本 BERT GloVe vector fusion small corpus short text classification
  • 相关文献

参考文献12

二级参考文献66

  • 1夏勇其,吴祈宗.一种混合型多属性决策问题的TOPSIS方法[J].系统工程学报,2004,19(6):630-634. 被引量:169
  • 2郑玉明,史晶蕊,廖湖声.文本分类的神经网络模型[J].计算机工程,2005,31(21):37-39. 被引量:4
  • 3Jain A K, Duin R, Mao J. Statistical Pattern Recognition: A Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1) :4-37.
  • 4Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfac es: Recognition Using Class Specific Linear Projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.
  • 5Fisher R A. The Use of Multiple Measurements in TaxonomicProblems[J]. Annals of Eugenics, 1936,7(2):178- 188.
  • 6Swets D, Weng J. Using Discriminant Eigenfeatures for Im age Retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (8) :831-836.
  • 7Hong Z Q, Yang J Y. Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane[J]. Pattern Recognition, 1991, 24(4) :317-324.
  • 8Chen I.-F, Mark Liao H Y, Ko M-T, et al. A New LDA Based Face Recognition System Which Can Solve the Small Sample Size Problem [J]. Pattern Recogniton, 2000, 33 (10) :317-324.
  • 9Yu Hua, Yang Jie. A Direct LDA Algorithm for High-Dimensional Data with Application to Face Recognition[J]. Pattern Recognition, 2001, 34(11):2067-2070.
  • 10Bernstein D S,So W. Some Explicit Formulas for the Matrix Exponential[J]. IEEE Transcation on Autom Control, 1993,38(8) :1228-1232.

共引文献147

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部