期刊文献+

Y^(3+)掺杂Li_(4)Ti_(5)O_(12)负极材料的电荷输运特性及电化学性能研究 被引量:1

Transport characteristics and electrochemical properties of Y^(3+)doped Li_(4)Ti_(5)O_(12)as anode material
下载PDF
导出
摘要 以Li_(2)CO_(3)与锐钛矿型TiO_(2)为原料,六水合硝酸钇(Y(NO_(3))_(3)·6H_(2)O)为钇源,采用球磨辅助固相法合成了Li_(4)Ti_(5-x)Y_(x)O_(12)(x=0,0.05,0.10,0.15,0.20)负极材料。通过X射线衍射分析(XRD)、扫描电镜(SEM)、能谱仪(EDS)与X射线光电子能谱(XPS)分别对材料的物相与形貌进行表征分析,并利用电化学工作站对材料的电化学性能与电荷输运特性进行测试。结果表明,Y^(3+)掺杂没有影响尖晶石型Li_(4)Ti_(5)O_(12)(LTO)材料的尖晶石结构,x=0.15时,Li_(4)Ti_(4.85)Y_(0.15)O_(12)样品的离子与电子电导率分别为2.68×10^(-7)S·cm^(-1)和1.49×10^(-9)S·cm^(-1),比本征材料提升了1个数量级,表现出良好的电荷输运特性。电化学测试表明,Li_(4)Ti_(4.85)Y_(0.15)O_(12)样品在0.1 C倍率首次放电比容量可达171 mAh·g^(-1),且在10 C与20 C高倍率下仍然拥有102 mAh·g^(-1)和79 mAh·g^(-1)的较高比容量,循环200周次后容量保持率分别为92.6%和89.1%,表现出良好的倍率特性。 Li_(4)Ti_(5-x)Y_(x)O_(12)(x=0,0.05,0.10,0.15,0.20)anode materials were synthesized by ball milling assisted solid-state method used Li_(2)CO_(3) and anatase TiO_(2) as raw materials and yttrium nitrate(Y(NO_(3))_(3)·6H_(2)O)as yttrium source.The phase and morphology of the materials were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray photoelectron spectroscopy(XPS),respectively.The electrochemical performance and transport characteristics of the materials were tested and analyzed by an electrochemical workstation.The results show that there is no effect of Y^(3+)doping on the spinel structure of LTO material.When x=0.15,the ion and electronic conductivities of the Li_(4)Ti_(4.85)Y_(0.15)O_(12) sample are 2.68×10^(-7)S·cm^(-1)and 1.49×10^(-9)S·cm^(-1),respectively,which are an order of magnitude higher than that of the intrinsic LTO,and present good transport characteristics.Electrochemical tests show that a first discharge capacity of Li_(4)Ti_(4.85)Y_(0.15)O_(12)sample can reach 171 mAh·g^(-1)at 0.1 C rate.The sample still has a higher specific capacity of 102 mAh·g^(-1)and 79 mAh·g^(-1)at a high rate of 10 C and 20 C,respectively.After 200 cycles,the capacity retention rates are 92.6%and 89.1%respectively,showing good magnification characteristics.
作者 吴冰 刘磊 王献志 肖潇 杨豹 赵锦涛 古成前 马雷 WU Bing;LIU Lei;WANG Xianzhi;XIAO Xiao;YANG Bao;ZHAO Jintao;GU Chengqian;MA Lei(Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province,College of Electronic Information Engineering,Hebei University,Baoding 071002,Hebei,China;Electric Power Research Institute,State Grid Hebei Electric Power Company,Shijiazhuang 050021,China)
出处 《材料工程》 EI CAS CSCD 北大核心 2022年第10期102-110,共9页 Journal of Materials Engineering
基金 天津市重点研究开发项目(19YFHBQY00030) 河北省自然科学基金(F2021201007,B202101051)。
关键词 掺杂 钛酸锂 电导率 稀土离子 高倍率 doping lithium titanate conductivity rare earth ion high rate
  • 相关文献

参考文献3

二级参考文献37

  • 1Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603.
  • 2Scrosati B, Garche J. Lithium batteries:status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430.
  • 3Yi T-F, Jiang L-J, Shu J, et al. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery[J]. Journal of Physics and Chemistry of Solids, 2010, 71(9):1236-1242.
  • 4Jung H G, Myung S T, Yoon C S, et al. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries[J]. Energy & Environmental Science, 2011, 4(4):1345-1351.
  • 5Li B, Han C, He Y B, et al. Facile synthesis of Li4Ti5O12/C composite with super rate performance[J]. Energy & Environmental Science, 2012, 5(11):9595-9602.
  • 6Kang E, Jung Y S, Kim G H, et al. Highly improved rate capability for a lithium-ion battery Nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-Assembly method[J]. Advanced Functional Materials, 2011, 21(22):4349-4357.
  • 7Wang Y Q, Gu L, Guo Y G, et al. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery[J]. Journal of the American Chemical Society, 2012, 134(18):7874-7879.
  • 8Zhao L, Hu Y S, Li H, et al. Porous Li4Ti5O12 coated with N-Doped carbon from ionic liquids for Li-ion batteries[J]. Advanced Materials, 2011, 23(11):1385-1388.
  • 9Li X, Qu M, Huai Y, et al. Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery[J]. Electrochimica Acta, 2010, 55(8):2978-2982.
  • 10Shi Y, Wen L, Li F, et al. Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries[J]. Journal of Power Sources, 2011, 196(20):8610-8617.

共引文献8

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部