期刊文献+

Waveguide-coupled deterministic quantum light sources and post-growth engineering methods for integrated quantum photonics

原文传递
导出
摘要 Integrated photonic quantum circuits(IPQCs)have attracted increasing attention in recent years due to their widespread applications in quantum information science.While the most envisioned quantum technologies such as quantum communications,quantum computer and quantum simulations have placed a strict constraint on the scalability of chip-integrated quantum light sources.By introducing sizeconfined nanostructures or crystal imperfections,low-dimensional semiconductors have been broadly explored as chip-scale deterministic single-photon sources(SPSs).Thus far a variety of chip-integrated deterministic SPSs have been investigated across both monolithic and hybrid photonic platforms,including molecules,quantum dots,color centers and two-dimensional materials.With the rapid development of the chip-scale generation of single photons with deterministic quantum emitters,the field of IPQCs has raised new challenges and opportunities.In this paper,we highlight recent progress in the development of waveguide-coupled deterministic SPSs towards scalable IPQCs,and review the post-growth tuning techniques that are specifically developed to engineer the optical properties of these WG-coupled SPSs.Future prospects on stringent requirement for the quantum engineering toolbox in the burgeoning field of integrated photonics are also discussed.
出处 《Chip》 2022年第3期28-49,共22页 芯片(英文)
基金 supported by National Key R&D Program of China(No.2017YFE0131300) Science and Technology Commission of Shanghai Municipality(Nos.16ZR1442600,20JC1416200) Shanghai Rising-Star Program(No.19QA1410600) Program of Shanghai Academic/Technology Research Leader(No.19XD1404600) National Natural Science Foundation of China(Nos.12074400,U1732268,61874128,61851406,11705262,11774326) Frontier Science Key Program of Chinese Academy of Sciences(No.QYZDY-SSW-JSC032).
  • 相关文献

参考文献4

二级参考文献51

  • 1Kim, J.; Benson, O.; Kan, H.; Yamamoto, Y. A single- photon turnstile device. Nature 1999, 397, 500-503.
  • 2Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W. V.; Petroff, P. M.; Zhang, L. D.; Hu, E.; Imamoglu, A. A quantum dot single-photon tumstile device. Science 2000, 290, 2282-2285.
  • 3Xu, X. L.; Williams, D. A.; Cleaver, J. R. A. Electrically pumped single-photon sources in lateral p-i-n junctions. Appl. Phys. Lett. 2004, 85, 3238-3240.
  • 4Yuan, Z. L.; Kardynal, B. E.; Stevenson, R. M.; Shields, A. J.; Lobo, C. J.; Cooper, K.; Beattie, N. S.; Ritchie, D. A.; Pepper, M. Electrically driven single-photon source. Science 2002, 295, 102 105.
  • 5Xu, X. L.; Toft, I.; Phillips, R. T.; Mar, J.; Hammura, K.; Williams, D. A. "Plug and play" single-photon sources. Appl. Phys. Lett. 2007, 90, 061103.
  • 6Xu, X. L.; Brossard, F.; Hammura, K.; Williams, D. A.; Alloing, B.; Li, L. H.; Fiore, A. "Plug and play" single photons at 1.3 μm approaching gigahertz operation. Appl. Phys. Lett. 2008, 93, 021124.
  • 7Zrenner, A.; Beham, E.; Stuffer, S.; Findeis, F.; Bichler, M.; Abstreiter, G. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 2002, 418, 612-614.
  • 8Mar, J. D.; Baumberg, J. J.; Xu, X. L.; Irvine, A. C.; Williams, D. A. Ultrafast high-fidelity initialization of a quantum-dot spin qubit without magnetic fields. Phys. Rev. B 2014, 90, 241303.
  • 9Li, X. Q.; Wu, Y. W.; Steel, D.; Gammon, D.; Stievater, T. H.; Katzer, D. S.; Park, D.; Piermarocchi, C.; Sham, L. J. An all-optical quantum gate in a semiconductor quantum dot. Science 2003, 301,809-811.
  • 10De Greve, K.; Yu, L.; McMahon, P. L.; Pelc, J. S.; Natarajan, C. M.; Kim, N. Y.; Abe, E.; Maier, S.; Schneider, C.; Kamp, M. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelengtk Nature 2012, 491,421-425.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部