期刊文献+

融合多头注意力机制的多任务情感分类研究 被引量:3

Researoh on multi-task sentiment classification based on the multi-head attention mechanism
下载PDF
导出
摘要 目的:针对当前多任务学习(multi-task learning,MTL)方法往往忽视子任务之间特征相关性的问题,提出一种融合多头注意力机制(multi-head attention,MHA)的多任务情感分类(MHA-MTL)方法。方法:首先采用MHA提取文本重要特征,在训练中对多领域数据集进行动态的自动归类。文中构造了基于长短期记忆网络(long short-term memory,LSTM)和逐点卷积网络的多任务情感分类器,并且设计了辅助分类任务的损失函数,在模型整体训练中,动态优化特征提取和分类器参数。结果:在五个领域的中文任务集上进行实验,实验结果表明与单任务和传统的多任务学习方法相比,本文提出的方法在准确性和F_(1)值上都有明显的提升。结论:使用融合多头注意力机制的多任务学习方法能够有效提升情感分类模型的性能。 Aims:Aiming at the problem that current multi-task learning(MTL)methods often ignore the feature correlation among subtasks,a multi-head attention based multi-task sentiment classification(MHA-MTL)method was proposed.Methods:Firstly,MHA was used to extract important features of text;and the dataset was dynamically and automatically classified during training.In this paper,the multi-task sentiment classifier based on long short-term memory(LSTM)and point-by-point convolutional network was constructed;and the loss function of the auxiliary classification task was designed.In the overall model training,the feature extraction and classifier parameters were dynamically optimized.Results:Experimental results on Chinese task sets in five domains showed that the proposed method had significant improvement in accuracy and F_(1) value compared with single-task and traditional multi-task learning methods.Conclusions:The multi-task learning method combined with multi-attention mechanism can effectively improve the performance of sentiment classification models.
作者 李欣雨 金宁 严珂 马祥 LI Xinyu;JIN Ning;YAN Ke;MA Xiang(College of Information Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2022年第3期413-422,442,共11页 Journal of China University of Metrology
基金 国家自然科学基金项目(No.61602431)。
关键词 自然语言处理 情感分类 多任务学习 多头注意力机制 natural language processing sentiment classification multi-task learning multi-head attention mechanism
  • 相关文献

参考文献9

二级参考文献69

  • 1毛六平,王耀南,孙炜,戴瑜兴.一种递归模糊神经网络自适应控制方法[J].电子学报,2006,34(12):2285-2287. 被引量:9
  • 2BALAHUR A, STEINBERGER R, KABADJOV M, et al. Sentiment analysis in the news[ J]. Infrared Physics and Technology, 2014, 65:94-102.
  • 3JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent twitter sentiment classification[ C ]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Techno- logies . 2011.
  • 4王金刚,于潇,宋丹丹,等.基于中文bag-of-opinions方法的微博情感分析[C]//NLP&CC.2012.
  • 5PAK A, PAROUBEK P. Twitter as a corpus for sentiment analysis and opinion mining [ C ]//Proc of International Conference on Lan- guage Resources and Evaluation. 2010.
  • 6TABOADA M, BROOKE J, TOFILOSKI M, et al. Lexicon-based methods for sentiment analysis [ J ]. Computational Linguistics, 2011, 37(2) : 267-307.
  • 7LUCIANO B, FENG Jun-lan. Robust sentiment detection on twitter from biased and noisy data[ C]//Proc of the 23rd International Con- ference on Computational Linguistics. 2010.
  • 8PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques [ C ]//Proc of Confe- rence on Empirical Methods in Natural Language Processing. 2002: 79- 86.
  • 9CUI Hang, MITYAL V, DATAR M. Comparative experiments on senti- ment classification for online product reviews [ C ]//Proc of the 21st National Conference on Artificial Intelligence. 2006: 1265-1270.
  • 10KOULOUMIS E, WILSON T, MOORE J. Twitter sentiment analysis: the good the bad and the OMG! [ C]//Proc of the 5th International AAAI Conference on Weblogs and Social Media. 2011: 538-541.

共引文献359

同被引文献21

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部