摘要
为了研究环中EP元,利用元素a∈R^(#)∩R^(+),构造出一些EP元和偏序等距元,并给出这些元素的MP逆;然后讨论了这些元素的MP逆与元素a所呈现的广义逆性质的关系;接着构造特定的方程,研究方程在给定集合χ_(a)中有解时a的PI性质;最后一般化所构造的方程并探究其一般解.
In order to study the EP elements in a ring,first some EP elements and partially ordered isometric element(PI element)by a∈R^(#)∩R^(+)Rare constructed,and the MP inverse of these elements given.The relations between the MP inverse of these elements and the generalized inverse properties presented by a are discussed.Next,some specific equations are constructed to study the PI property of a when the equations have solutions inχ_(a).Finally,the constructed equations are generalized and its general solution explored.
作者
赵丹丹
魏俊潮
Zhao Dandan;Wei Junchao(School of Mathematical Science,Yangzhou University,Yangzhou 225002,China)
出处
《洛阳师范学院学报》
2022年第8期1-5,共5页
Journal of Luoyang Normal University
基金
国家自然科学基金(11471282)。
关键词
群可逆元
MP-逆
EP元
PI元
SEP元
group invertible element
MP inverse
EP element
PI element
SEP element