期刊文献+

机器视觉测量技术在隧道结构试验中的应用研究 被引量:2

Application of Machine Vision Measurement Technology in Tunnel Structure Test
原文传递
导出
摘要 隧道结构试验是开展隧道结构受力性能研究的必要手段。试验时需布设轴力、应变或位移等类型的传感器。这些传感器通常安装复杂,接线密集,会影响试验时的人工观测;此外,传统伸缩式位移计在试验中存在一定的非轴向形变误差,会影响到测量结果的准确性。介绍了机器视觉测量系统原理,分析了测量原理和精度校验过程,结合杭州轨道交通机场快线结构试验,论证了测试效果。研究结果表明:机器视觉非接触式测量技术具有布设简单、测量精度高和数据可信度高等特点。 Tunnel structural test is a necessary approach to study the mechanical performance of tunnel structures.During the test,the sensors of axial force,strain or displacement should be arranged.These sensors may affect the manual observation as the installation of these sensors is usually complicated with dense wiring.In addition,the traditional telescopic displacement meter has certain non-axial deformation errors in the test,which will affect the accuracy of the measurement results.The principle of machine vision measurement system is introduced,the measurement principle and accuracy calibration process are analyzed.The testing effect was demonstrated in the structural test of Hangzhou Rail Transit Airport Expres.The results showed that the non-contact measurement technology of machine vision had the characteristics of simple deployment,high measurement accuracy and high data credibility.
作者 姚鸿梁 Yao Hongliang
出处 《隧道与轨道交通》 2022年第2期16-20,80,共6页 Tunnel and Rail Transit
  • 相关文献

参考文献5

二级参考文献32

  • 1吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902. 被引量:80
  • 2邱冬炜,杨松林.城市地铁施工监测系统的探讨[J].测绘科学,2007,32(4):175-176. 被引量:12
  • 3STORN R, PRICE K. Differential Evolution-A Simple And Efficient Adaptive Scheme For Global Optimization Over Continuous Spaces [J]. Journal of Global Optimization, 1997(11): 341-359.
  • 4FAN H Y, LAMPINEN ]. A Trigonometric Mutation Operation to Differential Evolution [J]. Journal of Global Optimi zation, 2003, 27(1): 105 129.
  • 5LIU J, LAMPINEN J. A Fuzzy Adaptive Differential Evolution Algorithm [J]. Soft Computing a Fusion of Foundations Methodologies and Applications, 2005, 9(6): 448-462.
  • 6DAS S, ABRAHAM A, CHAKRABORTY U K. Differential Evolution Using a Neighborhood Based Mutation Operator [J]. IEEE Trans Evolut Comput, 2009, 13(3) : 526-553.
  • 7HAMZACEBI C, KUTAY F. Continuous Functions Minimization by Dynamic Random Search Technique [J]. Applied mathematical Modelling, 2007, 31(10) : 2189-2198.
  • 8QIN A K, SUGANTHAN P N. Self-Adaptive Differential Evolution Algorithm for Numerical Optimization [C]//IEEE Congress on Evolution Computation. New York: IEEE Press, 2005: 1785 1791.
  • 9ZHANG J Q, SANDERSON A C. Adaptive Differential Evolution With Optional External Archive [J]. IEEE Transac tions on Evolutinary Computation, 2009, 13(5): 945-958.
  • 10池元成,方杰,蔡国飙.中心变异差分进化算法[J].系统工程与电子技术,2010,32(5):1105-1108. 被引量:9

共引文献23

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部