期刊文献+

Optimal model averaging estimator for multinomial logit models

原文传递
导出
摘要 In this paper,we study optimal model averaging estimators of regression coefficients in a multinomial logit model,which is commonly used in many scientific fields.A Kullback-Leibler(KL)loss-based weight choice criterion is developed to determine averaging weights.Under some regularity conditions,we prove that the resulting model averaging estimators are asymptotically optimal.When the true model is one of the candidate models,the averaged estimators are consistent.Simulation studies suggest the superiority of the proposed method over commonly used model selection criterions,model averaging methods,as well as some other related methods in terms of the KL loss and mean squared forecast error.Finally,the website phishing data is used to illustrate the proposed method.
出处 《Statistical Theory and Related Fields》 2022年第3期227-240,共14页 统计理论及其应用(英文)
基金 supported by Natural Science Foundation of China(No.11771268)a center named Shanghai Research Center for Data Science and Decision Technology.
  • 相关文献

参考文献2

二级参考文献52

  • 1J. M. Bates and C. M. J. Granger, The combination of forecasts, Operations Research Quarterly, 1969, 20: 451-468.
  • 2D. A. Bessler and J. A. Brandt, Forecasting livestock prices with individual and composite methods, Applied Economics, 1981, 13: 513-522.
  • 3R. T. Clemen and R. L. Winkler, Combining economic forecasts, Journal of Business and Economic Statistics, 1986, 4: 39-46.
  • 4P. Newbold and C. W. J. Granger, Experience with forecasting univariate time series and the combination of forecasts, Journal of the Royal Statistical Society, Series A, 1974, 2: 131-165.
  • 5R. F. Phillips, Composite forecasting: An integrated approach and optimality reconsidered, Journal of Business ~ Economic Statistics, 1987, 5: 389-395.
  • 6M. A. Clyde and E. George, Model uncertainty, Statistical Science, 2004, 19: 81-94.
  • 7D. Draper, Assessment and propagation of model uncertainty, Journal of the Royal Statistical Society: Series B, 1995, 57: 45-70.
  • 8J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, Bayesian model averaging: A tutorial, Statistical Science, 1999, 14: 382-417.
  • 9J. R. Magnus, O. Powell, and P. Prufer, A comparison of two averaging techniques with an application to growth empirics, Journal of Econometrics, 2009, in press, doi:10.1016/j.jeconom.2009.07.004.
  • 10A. E. Reftery, D. Madigen, and J. A. Hoeting, Bayesian model averaging for regression models, Journal of the American Statistical Association, 1997, 92:179-191.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部