期刊文献+

自寻优最大转矩电流比矢量控制连载之二:同步磁阻电机虚拟双极性信号注入法控制 被引量:1

Self-Optimizing MTPA Vector Control Part 2: Virtual Bipolar Signal Injection Method for Synchronous Reluctance Motor Control
下载PDF
导出
摘要 最大转矩电流比(MTPA)控制可以有效提升同步磁阻电机(SynRM)的效率。虚拟信号注入法是近年来实现MTPA控制的研究热点之一,现有的虚拟单极性方波信号注入法仍存在一定稳态误差,并且存在无效计算时间。提出一种虚拟双极性方波信号注入法,在单极性方波的基础上增加负极性信号,填补了单极性方波的无效计算时间,消除了单极性方波注入法存在的稳态固有误差,实现精准MTPA控制。通过理论仿真和硬件实验,将虚拟双极性方波注入法与现有的虚拟单极性方波注入法进行比对,验证了该方法具有更高的稳态精度,且具有良好的动态性能,能够实现SynRM的高性能MTPA控制。 The maximum torque per ampere(MTPA) control can improve the efficiency of the synchronous reluctance motor(SynRM), and the virtual signal injection method(VSIM) is one of the research issues to achieve the MTPA control in recent years. The existing virtual unipolar square wave signal injection method still suffers from errors and invalid computation time. A virtual bipolar square wave signal injection method was proposed. The bipolar square wave added the negative polarity signal to the unipolar square wave, to fill the invalid computation time, and eliminated the inherent steady-state error of the unipolar square wave injection method to achieve accurate MTPA control. Through simulations and experiments, it was verified that the proposed method had high steady-state accuracy and good dynamic performance, and achieved high-performance MTPA control.
作者 张雨馨 王云冲 史丹 徐彬涵 沈建新 ZHANG Yuxin;WANG Yunchong;SHI Dan;XU Binhan;SHEN Jianxin(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;Zhejiang Provincial Key Laboratory of Electrical Machine Systems,Hangzhou 310027,China;State Key Laboratory of Fluid Power and Mechatronic Systems,Hangzhou 310027,China)
出处 《微特电机》 2022年第10期1-8,共8页 Small & Special Electrical Machines
基金 国家自然科学基金项目(52007161,51837010) 浙江省尖兵领雁计划项目(2022C01097,2022C01001) 之江实验室科研攻关项目资助(2022PEOAC01)。
关键词 同步磁阻电机 最大转矩电流比控制 虚拟信号注入法 双极性 稳态精度 计算效率 synchronous reluctance motor(SynRM) maximum torque per ampere(MTPA)control virtual signal injection method(VSIM) bipolar steady-state accuracy computing efficiency
  • 相关文献

参考文献3

二级参考文献29

  • 1周立求,朱建华,辜承林.轴向叠片各向异性转子同步磁阻电机直接转矩控制的研究[J].中国电机工程学报,2006,26(4):154-158. 被引量:14
  • 2Consoli A, Scarcella G, Scelba G, et al. Steady-state and transient operation of IPMSMs under maximum-torque-per-ampere control[J]. IEEE Transactions on Industrial Applications, 2010, 46(1): 121-129.
  • 3Mohamed A R I, Lee T K. Adaptive self-tuning MTPA vector controller for IPMSM drive system[J]. IEEE Transactions on Energy Conversion, 2006, 21(3): 636-644.
  • 4Silverio B, Roberto P, Antonio P, et al. Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection[J]. IEEE Transactions on Industry Applications, 2011, 47(1): 105-114.
  • 5Chunki K, Scott D. Sudhoff. Genetic algorithm-based PMSM characterization procedure with application to maximum torque per amp control[J]. IEEE Transactions on EnergyConversion, 2006, 21(2): 405-415.
  • 6Matthias P, Silverio B. Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 1912-1921.
  • 7Lin F J, Hung Yingchih, Chen Jiaming, et al. Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA controln[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1226-1241.
  • 8Jin Ningzhi, Wang Xudong, Wu Xiaogang. Current sliding mode control with a load sliding mode observer forpermanent magnet synchronous machines[J]. Journal of Power Electronics, 2014, 14(I): 105-114.
  • 9Jung S , Jinseok H, Kwanghee N. Current minimizing torque control of the IPMSM using Ferrari's method [J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5603-5617.
  • 10Uddin M N, Rahrnan M A. High-speed control of IPMSM drives using improved fuzzy logic algorithms[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 190-199.

共引文献36

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部