期刊文献+

Intelligent geospatial maritime risk analytics using the Discrete Global Grid System 被引量:4

原文传递
导出
摘要 Each year,accidents involving ships result in significant loss of life,environmental pollution and economic losses.The promotion of navigation safety through risk reduction requires methods to assess the spatial distribution of the relative likelihood of occurrence.Yet,such methods necessitate the integration of large volumes of heterogenous datasets which are not well suited to traditional data structures.This paper proposes the use of the Discrete Global Grid System(DGGS)as an efficient and advantageous structure to integrate vessel traffic,metocean,bathymetric,infrastructure and other relevant maritime datasets to predict the occurrence of ship groundings.Massive and heterogenous datasets are well suited for machine learning algorithms and this paper develops a spatial maritime risk model based on a DGGS utilising such an approach.A Random Forest algorithm is developed to predict the frequency and spatial distribution of groundings while achieving an R2 of 0.55 and a mean squared error of 0.002.The resulting risk maps are useful for decision-makers in planning the allocation of mitigation measures,targeted to regions with the highest risk.Further work is identified to expand the applications and insights which could be achieved through establishing a DGGS as a global maritime spatial data structure.
出处 《Big Earth Data》 EI 2022年第3期294-322,共29页 地球大数据(英文)
基金 This work is partly funded by the University of Southampton’s Marine and Maritime Institute(SMMI)and the European Research Council under the European Union’s Horizon 2020 research and innovation program(grant agreement number:723526:SEDNA).
  • 相关文献

参考文献1

同被引文献35

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部