期刊文献+

基于物理信息神经网络的光斑质心计算 被引量:2

Calculation of spot entroid based on physical informed neural networks
下载PDF
导出
摘要 为了实现强噪声干扰下的远场光斑质心高精度计算,研究了一种基于物理信息神经网络的质心定位方法—质心物理信息神经网络(centroid-PINN),该方法利用U-Net神经网络优化质心计算误差损失.为了验证该方法,利用模拟产生不同强度的两种类型噪声(斜坡噪声和白噪声)干扰下的高斯光斑训练网络.通过两种类型的光斑(高斯光斑和类Sinc函数光斑)测试神经网络,均得到了较高的质心定位精度.相比传统质心定位计算方法,centroid-PINN无需根据噪声水平设置参数,特别是能够处理斜坡噪声的干扰,获得高精度定位结果.成果可用于高性能激光光斑质心参数测量设备的研制,对于夏克-哈特曼波前测量装置的研制也有一定的借鉴意义. To determine the centroid of far-field laser beam spot with high precision and accuracy under intense noise contamination,a positioning algorithm named centroid-PINN is proposed,which is based on physical information neural network.A U-Net neural network is utilized to optimize the centroid estimation error.In order to demonstrate this new method,Gaussian spots polluted by two kinds of noises,i.e.ramp noise and white noise,are generated by simulation to train the neural network.The neural network is tested by two kinds of spots,i.e.Gaussian spot and Sinc-like spot.Both are predicted with high accuracy.Compared with traditional centroid method,the centroid-PINN needs no parameter tuning,especially can cope with ramp noise interference with high accuracy.This work will be conducive to developing the far-field laser beam spot measurement device,and can also serve as a reference for developing the Shack-Hartmann wavefront sensor.
作者 方波浪 王建国 冯国斌 Fang Bo-Lang;Wang Jian-Guo;Feng Guo-Bin(Northwest Institute Nuclear Technology,Xi’an 710024,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第20期18-24,共7页 Acta Physica Sinica
基金 激光与物质相互作用国家重点实验室专项基金(批准号:SKLLIM1909)资助的课题。
关键词 测量 质心计算 神经网络 自适应光学 measurement centroid computation neural network adaptive optics
  • 相关文献

参考文献3

二级参考文献35

  • 1王薇,陈怀新.基于优化探测窗口的光斑质心探测方法[J].强激光与粒子束,2006,18(8):1249-1252. 被引量:15
  • 2章毓晋.图像工程(上册)图像处理[M].北京:清华大学出版社,2006.
  • 3Danial M. Optical Shop Testing[M]. Canada: John Wiley & Sons, Inc, 2007. 361-375.
  • 4Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. J Refract Surg, 2001, 17(5): S573-S577.
  • 5Liping Zhao, Wenjiang Guo, Xiang Li, et al.. Reference-free Shack-Hartmann wavefront sensor[J]. Opt Lett, 2011, 36(15): 2752-2754.
  • 6Javier Vargas, Luis González-Fernandez, Juan Antonio Quiroga, et al.. Shack-Hartmann centroid detection method based on high dynamic range imaging and normalization techniques[J]. Appl Opt, 2010, 49(13): 2409-2416.
  • 7Andre Fleck, Vasudevan Lakshminarayanan. Statistical error of a compact high-resolution Shack-Hartmann wavefront sensor with a discrete detector array[J]. Appl Opt, 2010, 49(31): G136-G139.
  • 8Baik S H, Park S K, Kim C J, et al.. A center detection algorithm for Shack-Hartmann wavefront sensor[J]. Opt & Laser Technol, 2007, 39(2): 262-267.
  • 9Pedro M P, Fernando V M, Stefan Goelz, et al.. Analysis of the performance of the Hartmann- Shack sensor in the human eye[J]. J Opt Soc Am A, 2000, 17(8): 1388-1398.
  • 10Otsu N. Discriminant and Least Square Threshold Selection[M]. Proc 4 IJCPR, 1978. 592-596.

共引文献22

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部