期刊文献+

基于位置关系模糊聚类的Web服务质量预测

Web service QoS prediction based on fuzzy clustering of location relation
下载PDF
导出
摘要 针对Web服务质量预测受数据稀疏与噪声数据的影响,从而造成预测精度较低的问题,提出了一种基于位置关系模糊聚类的Web服务质量协同过滤预测方法。该方法利用经纬度特征通过模糊C均值聚类算法得到隶属度矩阵,采用改进的相似度计算方法分别计算用户或服务之间的位置关系相似度与历史服务质量相似度,并设置权值将两者融合,从而缓解噪声数据对服务质量预测的影响,最后使用混合协同过滤算法预测空缺的服务质量。实验结果表明在数据稀疏的情况下,该方法预测精度高于其他方法。 A collaborative filtering quality of service(QoS) prediction method based on location relationship fuzzy clustering is proposed in order to address the problem of low prediction accuracy caused by sparse and noisy data. In this method, the longitude and latitude characteristics are used to obtain the degree of membership matrix through the fuzzy C-means clustering algorithm. The improved similarity calculation method is used to calculate the similarity of location relationship and the similarity of historical service quality between users or services, and the weights are set to fuse the two, so as to alleviate the impact of noise data on service quality prediction. Finally, the hybrid collaborative filtering algorithm is used to predict the quality of service of vacancies. The experimental results show that the prediction accuracy of this method is higher than that of other methods in the case of sparse data.
作者 朵琳 孙海瑞 DUO Lin;SUN Hai-rui(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《陕西理工大学学报(自然科学版)》 2022年第5期58-65,共8页 Journal of Shaanxi University of Technology:Natural Science Edition
基金 国家自然科学基金项目(61761025,61962032)。
关键词 WEB服务 服务质量 位置关系 模糊C均值聚类 协同过滤 Web service quality of service location relationship fuzzy C-means algorithm collaborative filtering
  • 相关文献

参考文献7

二级参考文献32

  • 1申文果,张秀娟,谢礼珊.网络企业服务质量的测量及其影响的实证研究[J].管理科学,2007,20(1):38-45. 被引量:22
  • 2YAO L, SHENG Q Z, SEGEV A, et al. Recommending Web services via combining collaborative filtering with contentbased featuresI-C]//Proceedings of the 20th IEEE International Con- ference on Web Services. Washington, D. C. , USA: IEEE,.
  • 3LINDEN G, SMITH B, YORK J. Amazon. tom recommenda- tions:item-to-item collaborative filteringJ-C://Proceedings of IEEE Internet Computing. Washington, D. C. , USA: IEEE, 2003 : 76-80.
  • 4SHAO Lingshuang, ZHANG Jing, WEI Yong, et al. Person-alized QoS prediction for Web services via collaborative filte- ring[C://Proceedings of International Conference on Web Service. Washington, D. C. ,USA:IEEE,2007:439-446.
  • 5ZHENG Zibin, MA Hao, LYU M R, et al. WSRec:a collabo- rative filtering based Webservice recommender system EC3// Proceedings of the 7th IEEE International Conference on Web Services. Washington,D. C. ,USA:IEEE,2009:437-444.
  • 6ZHENG Zibin, MA Hao, LYU M R, et al. QoS-aware Web serv- ice recommendation by collaborative filteringl-J:. IEEE Transac- tions on Services Computing,2011,4(2) : 140-152.
  • 7ZHANG Li, ZHANG Bin, LIU Ying, et al. A Web service QoS prediction approach based on collaborative filteringEC:// Proceedings of IEEE Asia-Pacific Services Computing Confer- ence. Washington,D. C. ,USA:IEEE,2010:725-731.
  • 8CHEN Xi, LIU Xudong, HUANG Zicheng, et al. Region- KNN: a scalable hybrid collaborative filtering algorithm for personalized Web service recommendationl-C3//Proceedings of IEEE International Conference on Web Services. Washington, D. C. ,USA:IEEE,2010:9-16.
  • 9TANG Mingdong, JIANG Yeehun, LIU Jianxun, et al. Loca- tion-aware collaborative filtering for QoS-based service recom- mendationFC3//Proceedings of IEEE International Conference on Web Services. Washington, D. C. , USA: IEEE, 2012: 202-209.
  • 10HU Yan, PENG Qimin, HU Xiaohui. A time-aware and da- ta sparsity tolerant approach for Web service recommendation [C]//Proceedings of IEEE International Conference on Web Services. Washington,D. C. ,USA:IEEE,2014.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部