摘要
点云配准是三维重建中的重要步骤,为解决传统迭代最近点(ICP)点云配准算法速度慢、迭代次数多、精度低的问题,在搭建3D相机与RGB模组成像系统的基础上,对传统ICP方法进行改进,提出一种AKAZE(Accelerated KAZE)算法与广义迭代最近点(GICP)算法相融合的方法。此方法采用AKAZE算法进行RGB图像的特征点匹配,将RGB图像的特征点映射至对应的点云数据上,利用广义迭代最近点算法实现点云配准。试验结果表明,所述融合算法相比传统的ICP算法,降低了迭代次数,平均时间缩短了41.29%,时间效率得到了极大提升,配准效果也有明显改善。提出的点云配准方法有效地解决了传统配准方法时间效率低的问题。
Point cloud registration is a critical step in 3 D reconstruction.In order to solve the problems of low speed,many iterations and low accuracy of the traditional Iterative Closest Point(ICP)point cloud registration algorithm,this paper builds an imaging system that consists of a 3 D camera and a RGB module and proposes a new method that combines the Accelerated KAZE(AKAZE)algorithm with the Generalized Iterative Closest Point(GICP)algorithm.In this method,the AKAZE algorithm was used to match the feature points of RGB image,and the RGB image feature points were mapped to the corresponding point cloud data.Moreover,the GICP algorithm was then used to achieve the point cloud registration.Results show that,compared with the usual ICP algorithm,the fusion algorithm in this paper reduces the number of iterations,the average time is shortened by 41.29%,the time efficiency is greatly improved,and the registration effect is also significantly improved.The point cloud registration method proposed in this paper effectively solves the problem of low time efficiency of traditional registration method.
作者
谢一博
姚斯齐
徐乃涛
周顺
余自然
程进
刘卫国
Xie Yibo;Yao Siqi;Xu Naitao;Zhou Shun;Yu Ziran;Cheng Jin;Liu Weiguo(School of Photoelectric Engineering,Xi′an Technological University,Xi'an,Shaanxi 710021,China;Wuxi V-Sensor Technology Co.Ltd.,Wuxi,Jiangsu 214101,China;Wuxi Yimeng Electronic Technology Co.,Ltd.,Wuxi,Jiangsu 214101,China)
出处
《应用激光》
CSCD
北大核心
2022年第6期102-107,共6页
Applied Laser
基金
陕西省教育厅科研计划重点项目(21JY017)。
关键词
迭代最近点算法
点云配准
时间效率
3D重建
iterative closest point algorithm
point cloud registration
time efficiency
3D reconstruction