期刊文献+

基于不动点理论的二阶微分-积分方程零解的渐近稳定性

Asymptotic stability of a second order integro-differential equation based on fixed point theory
下载PDF
导出
摘要 在不使用李亚普诺夫直接法的情况下,研究了一个二阶微分-积分方程的渐近稳定性。当微分-积分方程有无界的项或者时滞是无穷大时,利用李亚普诺夫直接法处理方程零解的渐近稳定性遇到了严重的困难。而本文利用不动点定理,得到了一类带有无穷时滞的中立型二阶微分-积分方程零解渐近稳定的充分必要条件。不动点定理解决了二阶微分-积分方程的零解的渐近稳定性问题,其结果不但解除了以往对无穷时滞的严格限制,而且也明显减少了对函数g的限制。 In this paper,the asymptotic stability of a second order differential integral equation is studied without using lyapunov direct method.When differential integral equations have infinite terms or time delay is unbounded,it is difficult to use Lyapunov direct method to solve the asymptotic stability of zero solution of differential integral equations.In this paper,by using the fixed point theorem,the necessary and sufficient conditions for the asymptotic stability of the zero solution of a class of neutral second order differential integral equations with infinite delay is obtained.Then the fixed point theorem not only solves the asymptotic stability problem of the zero solution of the second order differential integral equation,but also relieves the previous strict restriction on infinite delay,and significantly reduces the restriction on function g.
作者 朱红英 ZHU Hongying(Department of Applied Mathematics,Guangxi University of Finance and Economics,Nanning 530003,China)
出处 《桂林电子科技大学学报》 2022年第3期233-239,共7页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11761011) 广西自然科学基金(2022GXNSFBA035466)。
关键词 不动点 二阶微分-积分方程 渐近稳定 fixed point second order integro-differential equation asymptotic stability
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部