摘要
以配电网负荷方差和用户充电费用最小为目标函数,提出一种分时电价背景下光伏出力园区电动汽车的有序充电策略。以多目标优化遗传算法对某一特定园区内电动汽车充电行为进行仿真分析,验证了所提策略在满足用户充电需求的条件下,能够合理规划峰谷充电时段以节约充电成本、降低峰谷差率以及负荷波动,有利于配电网的稳定经济运行。
Based on the load distribution network,the objective function is minimum variance and the user of charging,an ordely charging strategy for electric vehicles in photovoltaic output parks under the background of time-sharing price.The multi-objective optimization genetic algorithm is used to simulate and analyze the charging behavior of electric vehicles in the special park.It is verified that under the proposed strategy meeting the demand of user charge conditions,the reasonable planning of peak-valley charging time can save charging cost,reduce peak-valley difference rate and load fluctuation,which is beneficial to the stable and economic operation of distribution network.
作者
黄柏强
陈建基
李盛佳
李长昕
HUANG Baiqiang;CHEN Jianji;LI Shengjia;LI Changxin(Guangzhou Panyu Central Hospital,Guangzhou 510000,China;Guangdong Provincial Key Laboratory of Energy Efficient and Clean Utilization,South China University of Technology,Guangzhou 510000,China)
出处
《电器与能效管理技术》
2022年第9期58-65,共8页
Electrical & Energy Management Technology
关键词
电动汽车
有序充电
分时电价
多目标优化
蒙特卡洛
electric vehicle
orderly charge
time-of-use price
multi-objective optimization
monte carlo