摘要
为充分发挥物联网边缘计算优势,减少数据挖掘处理时延,有必要对数据挖掘方法进行深度研究。文章以优化数据挖掘方法为目标,应用损失函数、分支网络模型、线性回归模型构建了基于物联网边缘计算的数据挖掘方法,通过仿真优化,进一步提高了系统表现精度,并验证了该数据挖掘方法的可行性。
In order to give full play to the advantages of IoT edge computing and reduce the processing delay of data mining, it is necessary to conduct in-depth research on data mining methods. In this paper, aiming at optimizing the data mining method, the loss function, branch network model and linear regression model are used to construct a data mining method based on IoT edge computing. Through simulation optimization, the performance accuracy of the system is further improved, and the data mining method is verified. feasibility.
作者
郑琳
Zheng Lin(Hengshui Open University,Hengshui 053000,China)
出处
《无线互联科技》
2022年第15期140-142,共3页
Wireless Internet Technology
关键词
物联网
边缘计算
数据挖掘
分支神经网络
分类决策
Internet of Things
edge computing
data mining
branched neural network
classification decision