期刊文献+

均方偏差分析的多态可变步长LMS算法 被引量:1

Multi-state variable step size LMS algorithm basedon analysis of mean square deviation
下载PDF
导出
摘要 最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速度慢等问题,提出了一种多态可变步长最小均方(multi-state variable step size least mean square,MVSS-LMS)算法。该算法通过添加暂态递减步长作为过渡,实现以更快的收敛速度达到系统中最小的MSD值。理论分析与仿真结果表明,与目前最新的Prob-LMS算法相比,所提算法在时变信道以及突变信道都具有更快的收敛速度和更低的MSD值,且算法的复杂度更低。 The minimum steady state mean square deviation(MSD)of the least mean square(LMS)algorithm in the time varying channel is determined by input power,noise power,random disturbance signal power and filter length.The traditional LMS algorithm adopts large iterations to achieve the system’s minimum MSD value so that its convergence speed is slow,so we propose a Multistate Variable Step Size Least Mean Square(MVSSLMS)algorithm.By adding the transient decreasing step size as the transition,the system can achieve the minimum MSD value with a faster convergence speed.According to theoretical analysis and simulation results,the proposed algorithm has a faster convergence speed and lower MSD value in time-varying channels and abrupt channels comparing with the latest Prob-LMS algorithm.The complexity of MVSS-LMS algorithm is also comparatively lower than that of Prob-LMS.
作者 孟金 张红升 易胜宏 刘挺 马小东 卫中阳 MENG Jin;ZHANG Hongsheng;YI Shenghong;LIU Ting;MA Xiaodong;WEI Zhongyang(Key Lab of Micro-electronics,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2022年第5期849-858,共10页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家重点研发计划重点专项项目(2019YFC1511300) 重庆市技术创新与应用发展项目(cstc2019jscx-msxmX0079)。
关键词 多态可变步长 最小均方(LMS)算法 稳态均方偏差(MSD) 概率最小均方(Prob-LMS)算法 multi-state variable step size least mean square(LMS) mean square deviation(MSD) Prob-LMS algorithm
  • 相关文献

参考文献1

二级参考文献12

  • 1Diniz P. Adaptive Filtering Algorithms and Practical Implementation [M]. Third edition, New York: Springer, 2008: 77-126.
  • 2Abadi M and Husoy J. Mean-square performance of the family of adaptive filters with selective partial updates J. Signal Processing, 2008, 88(8): 2008 2018.
  • 3Godavarti M and Hero A O. Partial update LMS algorithms [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2382-2399.
  • 4Duttweiler D L. Proportionate normalized least-meansquares adaptation in echo cancellers [J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(5): 508-518.
  • 5Deng H and Dyba R A. Partial update PNLMS algorithm for network echo cancellation [C]. Proceedings of ICASSP, Taipei China, 2009: 1329-1332.
  • 6Gu Y, Chen Y, and Tang K. Network echo canceller with active taps stochastic localization [C]. Proceedings of ISCIT, Beijing, 2005: 556-559.
  • 7Gu Y, Jin J, and Mei S. lo norm constraint LMS algorithm for sparse system identification [J]. IEEE Signal Processing Letters, 2009, 16(9): 774-777.
  • 8Li X, Fan Y, and Peng K. A variable step-size LMS adaptive filtering algorithm [C]. Proceedings of WiCOM, Beijing, 2009 2283-2286.
  • 9Vega L R, Rey H, and Benesty J. A new robust variable step-size NLMS algorithm [J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1878-1893.
  • 10Aboulnasr T and Mayyas K. A robust variable step-size LMS-type algorithm: analysis and simulations [J]. IEEE Transactions on Signal Processing, 1997, 45(3): 631-639.

共引文献14

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部