摘要
为检测混杂在地杂波、生物杂波中的天气信号,提高定量降水精度,提出了基于残差卷积神经网络(residual convolutional neural network, RCNN)的天气信号检测算法。首先,将采集的极化参数水平反射率因子、差分反射率、相关系数、差分相移率堆叠为三维数组后进行预处理,将其分为天气信号与杂波信号。然后,开发并优化RCNN,给出详细的网络结构。最后,通过多次实际的降水过程对所提算法的检测效果进行评价。结果表明,相比支持向量机以及卷积神经网络(convolutional neural network, CNN),所提算法对天气信号的检测效果更好,并且在不同仰角以及全年的实测数据上均表现出良好的检测性能。
To detect weather signals submerged in ground clutter and biological clutter and improve the accuracy of quantitative precipitation, a weather signal detection algorithm based on residual convolutional neural network(RCNN) is proposed. Firstly, the collected polarization parameters: horizontal reflectivity, differential reflectivity, correlation coefficient, and differential propagation phase constant stack into a three dimensional array which are then divided into weather signals and clutter signals for preprocessing. Then, RCNN is developed and optimized, and the detailed structure of network is provided. Finally, the detection effect of the proposed algorithm is evaluated through several actual precipitation processes. As demonstrated by testing results, compared to support vector machines and convolutional neural network(CNN), the proposed algorithm has better detection effects on different elevation angles and measured data throughout the year.
作者
高涌荇
王旭东
汪玲
朱岱寅
郭军
孟凡旺
GAO Yongxing;WANG Xudong;WANG Ling;ZHU Daiyin;GUO Jun;MENG Fanwang(Key Laboratory of Radar Imaging and Microwave Photonics of the Ministry of Education,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Leihua Electronic Technology Institute,Aviation Industry Corporation of China,Wuxi 214063,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2022年第11期3380-3387,共8页
Systems Engineering and Electronics
基金
国家自然科学基金(61801212)
工信部民机专项(MJ-2018-S-28)资助课题。
关键词
双极化气象雷达
残差卷积神经网络
天气信号检测
深度学习
dual polarization weather radar
residual convolutional neural network(RCNN)
weather signal detection
deep learning