期刊文献+

多载波OFDM信号识别方法 被引量:3

Recognition method of multi carrier OFDM signal
下载PDF
导出
摘要 无人机(unmanned aerial vehicle, UAV)技术发展迅速,应用十分广泛,用作UAV测控数传的正交频分复用(orthogonal frequency division multiplexing, OFDM)信号,给民用无线频谱管理、军用非合作通信技术带来不小的挑战。基于此,提出了一种基于包络相关谱的OFDM信号检测识别算法。主要利用OFDM信号的时域相关性,通过计算信号的复包络相关谱,并检测判断其相关谱的离散周期性,实现了在非合作通信中OFDM信号的识别。相比基于高阶累积量的检测识别算法,所提算法具有更好的信噪比适应能力,而且不需要设定判别的经验阈值,同时还能估计出子信道的带宽。仿真实验结果验证了所提方法的有效性。 Unmanned aerial vehicle(UAV) technology has developed rapidly and is widely used. As the orthogonal frequency division multiplexing(DFDM) signal of UAV measurement and control data transmission, it brings great challenges to civil wireless spectrum management and military non cooperative communication technology. Based on this, an OFDM signal detection and recognition algorithm based on envelope correlation spectrum is proposed. The algorithm mainly uses the time-domain correlation of OFDM signal, calculates the complex envelope correlation spectrum of the signal, detects and judges the discrete periodicity of its correlation spectrum, and realizes the identification of OFDM signal in noncooperative communication. Compared with the detection and recognition algorithm based on high-order cumulant, the proposed algorithm has better adaptability to signal to noise ratio, does not need to set the empirical threshold, and can estimate the bandwidth of subchannel. Simulation results show the effectiveness of the proposed method.
作者 朱立为 黄知涛 ZHU Liwei;HUANG Zhitao(School of Electronic Science,National University of Defense Technology,Changsha 410073,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2022年第11期3522-3528,共7页 Systems Engineering and Electronics
基金 湖南省自然科学创新群体(2019JJ10004)资助课题。
关键词 正交频分复用 信号识别 包络相关谱 orthogonal frequency division multiplexing(OFDM) signal recognition envelope correlation spectrum
  • 相关文献

参考文献2

二级参考文献25

  • 1吕挺岑,李兵兵,董刚.一种多径信道下的OFDM信号盲识别算法[J].现代电子技术,2007,30(11):13-16. 被引量:15
  • 2Schmidt R O. Multiple emitter location and signal parameter estimation [ J ]. IEEE Transactions on Antennas and Propagation, 1986, 34(3) :276 -280.
  • 3Zhou Q c, Gao H T, Wang F, et al. Modified DOA estimation methods with unknown source number based on projection pre- transformation[ J ]. Progress in Electromagnetics Research B, 2012, 38:387 -403.
  • 4Zhou Q C, Gao H T, Wang F. A high resolution DOA estimating method without estimating the number of sources [ J ]. Progress in Electromagnetics Research C, 2012, 25:233 - 247.
  • 5Belouchrani A, Amin M G. Time-frequency MUSIC [ J ]. IEEE Signal Processing, Letters, 1999, 6(5): 109-110.
  • 6Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection [ J] . IEEE Transactiolas on Acoustics Speech & Signal Processing, 1988, 36(10) : 1553 - 1560.
  • 7Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays [ J ]. IEEE Transactions on Signal Processing, 2005, 53(8) : 3010 -3022.
  • 8Li J, Stoica P. Robust adaptive beamforming [ J ]. Series in Telecommunications & Signal Processing, 2006, 15 ( 7 ) : 2345 - 2348.
  • 9Chevalier P, Albera L, Ferr6ol A, et al. On the virtual array concept for higher order array processing [J ] IEEE Transactions on Signal Processing, 2005, 53 (4) : 1254 - 1271.
  • 10Porat B, Friedlander B. Direction finding algorithms based on high-order statistics [ J ]. IEEE Transactions on Signal Processing, 1991, 39(9) :2016 -2024.

共引文献3

同被引文献30

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部