摘要
基于半直和李代数的零曲率方程,应用一族非半单矩阵李代数构建的块矩阵构建了AKNS孤子族对应系统的双可积耦合及其哈密尔顿结构.
Based on zero curvature equations from semi-direct sums of Lie algebras,we construct bi-integrable couplings for the counterpart of the AKNS soliton hierarchy and their Hamiltonian structures by applying a class of non-semisimple matrix loop algebras consisting of triangular block matrices.
作者
王蕾
唐亚宁
WANG Lei;TANG Yaning(School of Mathematics and Statistics,Taiyuan Normal University,Jinzhong 030619,China;School of Mathematics and Statistics,Northwestern Polytechnical University,Xi’an 710129,China)
出处
《应用数学》
CSCD
北大核心
2022年第4期827-834,共8页
Mathematica Applicata
基金
Supported in part by the National Natural Science Foundation of China(11401424)
the Natural Science Foundation of Shanxi province(201901D211423)
the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(2019L0783)
the Teaching Reform project of Taiyuan Normal University(JGLX2128)。
关键词
半直和李代数
零曲率方程
双可积耦合
哈密尔顿结构
Semi-direct sums of Lie algebras
Zero curvature equation
Bi-integrable coupling
Hamiltonian structure