期刊文献+

AKNS孤子族对应系统的哈密尔顿双可积耦合

Hamiltonian Bi-integrable Couplings for the Counterpart of the AKNS Soliton Hierarchy
下载PDF
导出
摘要 基于半直和李代数的零曲率方程,应用一族非半单矩阵李代数构建的块矩阵构建了AKNS孤子族对应系统的双可积耦合及其哈密尔顿结构. Based on zero curvature equations from semi-direct sums of Lie algebras,we construct bi-integrable couplings for the counterpart of the AKNS soliton hierarchy and their Hamiltonian structures by applying a class of non-semisimple matrix loop algebras consisting of triangular block matrices.
作者 王蕾 唐亚宁 WANG Lei;TANG Yaning(School of Mathematics and Statistics,Taiyuan Normal University,Jinzhong 030619,China;School of Mathematics and Statistics,Northwestern Polytechnical University,Xi’an 710129,China)
出处 《应用数学》 CSCD 北大核心 2022年第4期827-834,共8页 Mathematica Applicata
基金 Supported in part by the National Natural Science Foundation of China(11401424) the Natural Science Foundation of Shanxi province(201901D211423) the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(2019L0783) the Teaching Reform project of Taiyuan Normal University(JGLX2128)。
关键词 半直和李代数 零曲率方程 双可积耦合 哈密尔顿结构 Semi-direct sums of Lie algebras Zero curvature equation Bi-integrable coupling Hamiltonian structure
  • 相关文献

参考文献1

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部