期刊文献+

带p-Laplacian算子的哈密顿系统同宿解的研究

Research on Homoclinic Solution of Hamiltonian System with p-Laplacian Operator
下载PDF
导出
摘要 本文研究一类带p-Laplacian算子的哈密顿系统可解性的问题.在势函数W(t,u)满足新的超p次和次p次增长组合条件时,利用临界点理论得到上述系统同宿解的存在性定理,推广了相关问题已有的结果. This paper studies the solvability of a class of Hamiltonian systems with p-Laplacian operators.When the potential function W(t,u)satisfies the new combination of super p-th and sub p-th growth conditions,the critical point theory is used to obtain the existence theorem of the homoclinic solution of the above system,which extends the existing results of related problems.
作者 薛婷婷 卞继承 姜永胜 XUE Tingting;BIAN Jicheng;JIANG Yongsheng(School of Mathematics and Physics,Xinjiang Institute of Engineering,Urumqi 830000,China)
出处 《应用数学》 CSCD 北大核心 2022年第4期847-854,共8页 Mathematica Applicata
基金 新疆维吾尔自治区科技厅青年科学基金(2021D01B35) 新疆维吾尔自治区高校科研计划自然科学基金(XJEDU2021Y048) 新疆工程学院博士启动基金(2020xgy012302)。
关键词 哈密顿系统 P-LAPLACIAN算子 变分法 同宿解 Hamiltonian system p-Laplacian operator Variational method Homoclinic solution
  • 相关文献

参考文献5

二级参考文献40

  • 1JIANGQIBAO,HANMAOAN.MELNIKOV FUNCTIONS AND PERTURBATION OF A PLANAR HAMILTONIAN SYSTEM[J].Chinese Annals of Mathematics,Series B,1999,20(2):233-246. 被引量:9
  • 2Rabinowitz P H. Homoclinic orbits for a class of Hamiltonian systems. Proc. R. Soc. Edinb. 1990, l14(A): 33-38.
  • 3Marek I, Joanna J. Homoclinic solutions for a class of second order Hamiltonian systems. J Differential Equations, 2005, 219(2): 375-389.
  • 4Cotizelati V, Rabinowitz P H. Homoclinic orbits for Hamiltonian systerms possessing superquadratic potentials. J. Am. math. Soc., 1991, 4: 693-727.
  • 5Coti-Zelati V, Ekeland I, Sere E. A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., 1990, 288(HS): 133-160.
  • 6Ding Y H, Girardi M. Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changings sign. Dynam. Syst. Applic., 1993, 2: 131-145.
  • 7Ambrosetti A, Bertotti M L. Homoclinics for a second order conservative systems. Proc. Conf. in honour of Nirenberg L, Trento, 1990.
  • 8Rabinowitz P H, Tanaka K. Some results on connecting orbits for a class of Hamiltonian systems. Math. Z., 1991, 206: 473-499.
  • 9Sere E. Existence of infinitely many homoclinic orbits in Hamiltonian systerms. Math. Z., 1992, 209: 27-42.
  • 10Lu Y, Tang C L. Existence of even homoclinic orbits for second-order Hamiltonian systems. Nonlinear Analysis, 2007, 67: 2189-2198.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部