摘要
本研究以野燕麦麦芒细胞为研究对象,基于其吸湿自驱动行为的内在机理,利用定制的智能水凝胶为基材成功制备出兼具响应速率快、形变尺度大等特性的仿生自驱动复合材料,分析了长度、吸水时间和含水率对其扭转变形的影响,并针对仿生自驱动复合材料的吸湿运动形式和变形结果进行了有限元分析。研究结果表明:仿生复合材料的长度越长,扭转的圈数就越多,但长度过长会使材料吸湿后因承重过大而弯曲倾斜;吸湿平衡后的长度基本为吸水前长度的1.5倍;仿生复合材料轴向应变和扭转角随含水率的增加呈现不断增加的趋势,在整个含水率变化过程中,仿生材料轴向应变及单位长度扭转角的最大值分别为29.99%、0.057 rad/mm;有限元计算结果与实验结果吻合度较好,有效验证了有限元分析方法的可行性及仿生材料吸湿变形结果的可靠性。
Based on the intrinsic mechanism of hygroscopic self-driving behavior of wild oat wheat awn cells, a biomimetic self-actuating composite with high response rate and large deformation scale was successfully prepared by using the customized intelligent hydrogel as the substrate material. Effects of length, water absorption time and water content on the torsional deformation of biomimetic self-actuating composite were analyzed. In addition, hygroscopic motion form and deformation result of the biomimetic self-actuating composite material were analyzed by finite element method. Results show that the longer the length of biomimetic composite is, the more the number of torsion turns will be, but too long will cause to the material to bend and tilt due to excessive load bearing after hygroscopic. After hygroscopic balance is basically 1.5 times of the length before hygroscopic, axial strain and torsion angle of the biomimetic composite show an increasing trend with the increase of water content. In the whole process of water content change, the maximum axial strain and the maximum angle of twist per unit length of biomimetic composite are 29.99% and 0.057 rad/mm, respectively. The results of finite element calculation are in good agreement with the experimental results, which effectively verifies the feasibility of the finite element analysis and the reliability of the hygroscopic deformation results of biomimetic materials.
作者
刘梦云
徐献忠
刘铭
李晨阳
LIU Mengyun;XU Xianzhong;LIU Ming;LI Chenyang(School of Mechanics and Safety Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处
《材料科学与工程学报》
CAS
CSCD
北大核心
2022年第5期779-784,共6页
Journal of Materials Science and Engineering
关键词
微结构仿生设计
吸湿自驱动
有限元分析
新型复合材料
扭转变形
Biomimetic microstructure design
Hygroscopic self-drive
Finite element analysis
New composite materials
Torsion deformation