期刊文献+

一种基于HMM算法改进的语音识别系统 被引量:11

An Improved Speech Recognition System Based on HMM Algorithm
下载PDF
导出
摘要 针对传统的HMM模型中状态持续时间不长的不足,且在计算量大的情况下,语音识别精度不高,训练时间长,训练误差较高,提出了一种基于语音状态持续时间长的HMM模型。首先,令状态转移矩阵的对角线元素全为0,去掉自转移弧,再增添以参数化的函数描述持续时间的高斯分布,再通过帧与帧相互之间的关联程度,将每帧都计算进去;其次,通过重估公式反复计算每条弧被指定的转变概率和可见符号序列输出最原始的数值概率,直至收敛,停止运算。最后,在HMM模型改进前后实验中得到更小的训练误差,下降速度更快,计算量较之前减少多,更容易达到收敛,其概率输出与它前面一个概率输出的差值与该概率输出值的比值大于HMM模型设定的初始值。与传统HMM模型实验比较,基于持续时间状态的HMM模型可以在一定程度上降低训练次数和训练时间,提高识别语音的精确度,基本完成了语音识别系统的功能。 In view of the shortage of the traditional HMM model with a short state duration,and the low accuracy of speech recognition,long training time and high training error in the case of large computation,a HMM model based on a long state duration of speech was proposed.First,the diagonal elements of the state transition matrix are all 0,the self-transition arc is removed,and a Gaussian distribution describing the duration with a parameterized function is added.Then,each frame is calculated according to the degree of correlation between frames,and the specified transition probability of each arc and the most primitive numerical probability of the visible symbol sequence output are repeatedly calculated by the re-evaluation formula until convergence,and the operation is stopped.The ratio of the difference between its probability output and its previous probability output and the probability output value is greater than the initial value set by the HMM model.Compared with the traditional HMM model experiment,the HMM model based on the duration state can reduce the number of training times and shorten the training time to a certain extent,improve the accuracy of speech recognition,and basically complete the function of the speech recognition system.
作者 黄清 方木云 HUANG Qing;FANG Mu-yun(School of Computer Science and Technology,Anhui University of Technology,Anhui Maanshan 243000,China)
出处 《重庆工商大学学报(自然科学版)》 2022年第5期56-61,共6页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金项目资助(61971004).
关键词 语音识别 传统HMM模型 状态持续时间的HMM speech recognition traditional HMM model HMM with state duration
  • 相关文献

参考文献9

二级参考文献53

共引文献41

同被引文献112

引证文献11

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部