摘要
采用实验研究的方法,选择TH-ME25作为相变微胶囊颗粒,去离子水作为基液,制备质量分数为10%的相变微胶囊悬浮液(MPCMS25),并搭建BIPV系统与BIPV-MPCMS系统的实验台,在南京地区进行对比实验。将两个系统按同一高度固定在建筑小屋的南立面墙体上,采集2021年5月24日系统0:00到25日0:00共计24 h的运行测试数据,对相变微胶囊悬浮液在BIPV系统中的热、电性能优化效果进行研究。结果显示:(1) MPCMS25使系统的组件温度最大降低8.8℃,背板温度最大降低11.1℃,对组件运行温度和背板温度的优化时长分别为9.5 h和9.75 h,并使组件运行温度峰值出现的时间延迟114 min,背板峰值温度延迟125 min;(2)悬浮液能使光伏组件的光电转换效率最大提高10%左右。
Using the method of experimental study, TH-ME25 was selected as the phase change microcapsule particles and deionized water was used as the base solution to prepare the phase change microcapsule suspension(MPCMS25) with a mass fraction of 10%, and the experimental bench of BIPV system and BIPV-MPCMS system was built to conduct comparative experiments in Nanjing area. The two systems were fixed to the south facade wall of the building hut at the same height, and operational test data were collected for a total of 24 hours from 0:00 to 0:00 on May 24, 2021 for the system to investigate the effect of optimizing the thermal and electrical performance of the phase change microencapsulated suspension in the BIPV system. The results show that 1) MPCMS25 can reduce the module temperature of the system by a maximum of 8.8 ℃ and the backsheet temperature by a maximum of 11.1 ℃, the optimization time for module operation temperature and backsheet temperature are 9.5 h and 9.75 h respectively, and delay the appearance of peak module operation temperature by 114 min and peak backsheet temperature by 125 min;2) The suspension can increase the photovoltaic module’s photoelectric conversion efficiency by about 10% at maximum.
作者
章文杰
李小明
韩锋
李晓阁
赵瑜强
ZHANG Wen-jie;LI Xiao-ming;HAN Feng;LI Xiao-ge;ZHAO Yu-qiang(School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;China Railway Construction Group Corporation Limited,Beijing 100040,China)
出处
《建筑节能(中英文)》
CAS
2022年第9期29-33,45,共6页
Building Energy Efficiency
基金
国家自然科学基金青年科学基金资助项目(51908287)
江苏省自然科学基金资助项目(BK20180484)。
关键词
相变微胶囊悬浮液
光伏建筑一体化
热性能
电性能
实验研究
phase change microencapsulated suspensions
photovoltaic building integration
thermal performance
electrical performance
experimental research