摘要
本文研究分位数回归的组变量选择问题。基于分位数回归和贝叶斯统计推断方法,通过引入系数的组“spike and slab”先验分布,提出了分位数回归的贝叶斯组变量选择方法,并给出易于实施的Gibbs后验抽样算法。进一步,本文还将所建立的贝叶斯组变量选择方法应用到变点检测中,变点的数量和位置的探测准确率较高。数值模拟和两个实例分析验证了所提方法的有效性。
In this paper,we study the group variable selection problem of quantile regression.Based on quantile regression and Bayesian statistical inference methods,the Bayesian group variable selection method for quantile regression is established by introducing the group "spike and slab" prior distribution of regression coefficients,and a Gibbs posterior sampling algorithm is obtained which is easy to implement.Furthermore,this paper also applies the established Bayesian group variable selection method to change point detection.We obtain a higher detection accuracy of the number and location of change points.Numerical simulation and two examples are used to illustrate the effectiveness of the proposed method.
作者
冯俊丰
林芳逗
赵为华
FENG Jun-feng;LIN Fang-dou;ZHAO Wei-hua(School of Sciences,Nantong University,Nantong 226019,China)
出处
《数理统计与管理》
CSSCI
北大核心
2022年第5期815-830,共16页
Journal of Applied Statistics and Management
基金
国家自然科学基金(11971171)
国家社科基金(15BTJ027)。
关键词
分位数回归
贝叶斯组变量选择
变点检测
Gibbs后验抽样
quantile regression
Bayesian group variable selection
change point detection
Gibbs posterior sampling