期刊文献+

基于拓扑信息耦合加权的链路预测方法 被引量:2

Link Prediction Method Based on Information Coupling of Topology Weighting
原文传递
导出
摘要 链路预测方法的提出往往需要一些好的网络生长机制来支持,如网络的社团结构、偏好连接和弱连接效应都可以很好的指导链路预测.现有的基于相似性的方法,忽略了拓扑信息耦合对实际网络演化的促进作用.鉴于此,提出一种基于拓扑信息耦合加权的预测方法.首先,以拓扑信息耦合度构建边权矩阵,进而为节点间不同异构的路径计算其耦合度;其次,综合多跳不同长度路径对相似性的贡献评价节点间的相似度.实验结果表明,提出的指标具有较高的预测精度,且具有良好的鲁棒性. The proposal of link prediction methods often requires some good network growth mechanisms to support,such as the network community structure,preference connection and weak connection effects can all guide link prediction very well.The existing similarity-based methods neglect the promotion of information coupling of topology to real network evolution.In order to solve this problem,this paper proposes a prediction method based on information coupling of topology weighting.Initially the link weight matrix is constructed by the coupling degree of topology information and the coupling degree for different heterogeneous paths between nodes is calculated Then,the similarity between nodes is evaluated by integrating the contribution of multi-top paths with different lengths to the similarity.Empirical study shows that the proposed index has high prediction accuracy and good robustness.
作者 李巧丽 韩华 LI Qiao-li;HAN Hua(Department of Science,Wuhan University of Technology,Wuhan 430070,China)
出处 《数学的实践与认识》 2022年第9期156-167,共12页 Mathematics in Practice and Theory
基金 国家自然科学基金(12071364) 国家自然科学基金青年科学基金(11701435)。
关键词 复杂网络 链路预测 信息耦合 拓扑加权 相似性度量 complex network link prediction information coupling topological weighting similarity measurement
  • 相关文献

参考文献4

二级参考文献47

  • 1方锦清,汪小帆,郑志刚,毕桥,狄增如,李翔.一门崭新的交叉科学:网络科学(上)[J].物理学进展,2007,27(3):239-343. 被引量:130
  • 2BIAN Jiang, XIE Mengjun, TOPALOGLU U, et al. Social network analysis of biomedical research collaboration networks in a CTSA institution[J]. Journal of Biomedical Informatics, 2014, 52(1): 130-140. doi:10.1016/j.jbi. 2014.01.015.
  • 3WANG Shengjun, WANG Zhen, JIN Tao, et al. Emergence of disassortative mixing from pruning nodes in growing scale-free networks[J]. Scientific Reports, 2014, 4(7): 7536-7541. doi: 10.1038/srep07536.
  • 4ZHANG Yudong, BAO Zhejing, CAO Yijia, et al. Long-term effect of different topology evolutions on blackouts in power grid[J]. International Journal of Electrical Power & Energy Systems, 2014, 62(4): 718-726. doi:10.1016/j.ijepes.2014 04.056.
  • 5TESCHENDORFF A E, BANERJI C R S, SEVERINI S, et al. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks[J]. Scientific Reports, 2015, 5(9), article number: 9646. doi: 10.1038/srep09646.
  • 6SUN Li, LIU Like, XU Zhongzhi, et al. Locating inefficient links in a large-scale transportation network[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 419(2): 537-545. doi: 10.1016/j.physa.2014.10.066.
  • 7WATTS D J and STROGATZ S H. Collective dynamics of 'small-world' networks[J[. Nature, 1998, 393(6684): 440-442. doi: 10.1038/30918.
  • 8BARABASI A L and ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. doi: 10.1126/science.286.5439.509.
  • 9ALBERT R and BARABESI A L. Topology of evolving networks: local events and universality[J]. Physical Review Letters, 2000, 85(24): 5234-5237. doi: 10.1103/PhysRevLett. 85.5234.
  • 10BIANCONI G and BARABESI A L. Bose-einstein condensation in complex networks[J]. Physical Review Letters 2001, 86(24): 5632-5635. doi: 10.1103/PhysRevLett.86.5632.

共引文献37

同被引文献37

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部