期刊文献+

基于流形假设的骨架序列动作识别算法

Skeleton-based action recognition by manifold assumption
下载PDF
导出
摘要 骨架数据是通过对动作的空间几何位置进行编码获取,可以避免冗余背景信息的干扰,是动作识别领域常用的数据类型之一.现有骨架数据的动作识别主要分为经典的骨架数据表征和基于深度学习的骨架动作识别应用.相较于传统欧氏度量下的识别方法,流形为更好地研究非线性结构提供了重要数学工具.然而,目前仍缺乏利用流形假设对骨架数据进行动作识别的相关总结.因此,从骨架表示、轨迹时间对齐、动作序列表征以及动作分类4个关键步骤出发,系统地总结了基于流形假设的动作识别工作,对比了各项工作在基准数据集上的表现.最后,根据当前动作识别工作的发展趋势,对流形假设在动作识别方向上的进一步改进进行了展望. Skeletal data are obtained by encoding the spatial geometric position of the action,which can prevent the interference of redundant background information.It is one of the commonly used data types in the field of action recognition.The existing review of action recognition related to skeletal data is mainly divided into the classical skeletal data representation and the application of skeletal action recognition based on deep learning.Compared with the action recognition methods based on the traditional Euclidean metric,manifolds provide an important mathematical tool for a better study of nonlinear structures.However,there is still a lack of summaries about action recognition from skeletal data using the manifold assumption.Therefore,starting from the four steps of skeleton representation—trajectory temporal alignment,action sequence characterization,and action classification—this article systematically summarizes the action recognition work based on the manifold assumption,and compares the performance of each work on the benchmark datasets.Finally,according to the current development trend of action recognition,further improvement of the manifold assumption in the direction of action recognition is prospected.
作者 彭亚新 赵倩 PENG Yaxin;ZHAO Qian(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期179-200,共22页 Journal of Shanghai University:Natural Science Edition
基金 国家重点研发计划资助项目(2018YFF01013402) 国家自然科学基金资助项目(11771276,12026416,11971296) 上海市科技创新行动计划资助项目(18441909000)。
关键词 动作识别 流形假设 骨架表示 轨迹时间对齐 形状空间 action recognition manifold assumption skeleton representation trajectory temporal misalignment shape space
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部