期刊文献+

求解非凸优化问题的近似交替方向乘子法 被引量:4

Approximate ADMM for Non-Convex Optimization Problems
下载PDF
导出
摘要 考虑有界约束上具有可分结构的非凸优化问题,提出了一种基于ADMM的新算法P-ADMM(即近似ADMM).在基于ADMM的框架下,P-ADMM在解决有界约束上的非凸子问题时,采用梯度投影,以此简化非凸子问题的求解,降低运算成本,并且通过引入一个“平滑的”(即指数加权)原始迭代序列,在每次迭代时,向增广拉格朗日函数中增加一个以平滑的原始迭代为中心的近似二次项,使所得到的近似增广拉格朗日函数在每次迭代时被不精确地最小化,在保证算法收敛性的同时也能够提升算法的收敛速度.数值实验表明,该算法可有效应用于求解一类非凸的船舶分布式能源管理问题. In this paper,a new algorithm P-ADMM(approximate ADMM) based on ADMM is proposed for non-convex optimization problems with separable structures under bounded constraints.In the framework based on ADMM,P-ADMM adopts gradient projection to solve non-convex sub-problems with bounded constraints,so as to simplify the solving of non-convex sub-problems and reduce the cost of operation.Moreover,by introducing a “smooth”(exponential weighted) original iteration sequence,and at each iteration,by adding an approximate quadratic term centered on smooth original iteration to the augmented Lagrange function,the obtained approximate augmented Lagrange function is inaccurately minimized in each iteration,which can not only ensure the convergence of the algorithm but also improve the convergence speed of the algorithm.Numerical experiments show that this algorithm can be effectively applied to a class of non-convex ship distributed energy management problem.
作者 谭秋芬 罗洪林 TAN Qiufen;LUO Honglin(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处 《西南师范大学学报(自然科学版)》 CAS 2022年第10期7-18,共12页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11991024,11771064) 重庆市高校创新研究群体项目(CXQT20014) 重庆市自然科学基金项目(cstc2021jcyj-msx300)。
关键词 非凸优化 近似ADMM 二次近似项 梯度投影 non-convex optimization approximate ADMM quadratic approximate term gradient projection
  • 相关文献

参考文献3

二级参考文献35

  • 1Berry M W,Browne M,Langville A N,Pauca V P Plemmons R J. Algorithms andapplications for approximate nonnegative matrix factorization[J].Computational Statistics and Data Analysis,2007,(01):155-173.
  • 2Bertsekas D P,Tsitsiklis J N. Parallel and Distributed Computation: Numerical Methods[M].Upper Saddle River:Prentice-Hall,Inc,1989.
  • 3Biswas P,Lian T C,Wang T C,Ye Y. Semidefinite programming based algorithms for sensor network (l)ocalization[J].ACM Transactions on Sensor Networks,2006,(02):188-220.
  • 4Cai J F,Candes E J,Shen Z. A singular value thresholding algorithm for matrix completion export[J].SIAM Journal on Optimization,2010.1956-1982.
  • 5Candès E J,Li X,Ma Y,Wright J. Robust principal component analysis[J].Journal of the ACM,2011,(03):11.
  • 6Candès E J,Recht B. Exact matrix completion via convex optimization[J].Foundations of Computational Mathematics,2009,(06):717-772.doi:10.1007/s10208-009-9045-5.
  • 7Candès E J,Tao T. The power of convex relaxation:Near-optimal matrix completion[J].IEEE Transactions on Information theory,2010,(05):2053-2080.
  • 8Cichocki A,Morup M,Smaragdis P,Wang W,Zdunek R. Advances in Nonnegative Matrix and Tensor Factorization[A].New York:Hindawi Publishing Corporation,2008.
  • 9Cichocki A,Zdunek R,Phan A H,Amari S. Nonnegative Matrix and Tensor Factorizations—Applications to Exploratory Multiway Data Analysis and Blind Source Separation[M].Hoboken:John Wiley & Sons,Ltd,2009.
  • 10Fazel M. Matrix Rank Minimization with Applications[D].Stanford University,2002.

共引文献40

同被引文献37

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部