期刊文献+

基于小波变换及注意力机制的T型图像去雾网络 被引量:1

T-shaped Image Dehazing Network Based on Wavelet Transform and Attention Mechanism
下载PDF
导出
摘要 受大气中雾霾等悬浮颗粒的影响,室外拍摄的图像常伴有低对比度和低能见度问题,现存去雾方法未能充分利用图像的局部特征信息,存在去雾不彻底及图像细节丢失等问题.为此,提出一种基于小波变换及注意力机制的T型图像去雾网络.所提网络通过对图像进行多次离散小波分解及重构来获取有雾图像的边缘细节特征,并提出了一种兼顾图像全局特征及局部信息提取的特征注意力模块,加强了网络在图像视觉感知和细节纹理方面的学习.在进行特征提取的过程中,提出T型连接方式来获得多尺度的图像特征,扩展了网络的表示能力.对重构后的无雾图像进行色彩平衡,得到最终复原图像.在合成数据集和真实数据集中的大量实验结果表明,本文所提网络相较于现有其他网络模型具有更优越的性能. As affected by suspended particles such as haze in the atmosphere,images taken outdoors often suffer from low contrast and low visibility.The existing dehazing methods fail to make full use of the local feature information of the image,and there are problems such as incomplete dehazing and loss of image details.For this reason,this paper proposes a T-shaped image dehazing network based on wavelet transform and attention mechanism.Specifically,the proposed network obtains the edge detail features of the hazy image by performing multiple discrete wavelet decomposition and reconstruction on the image and proposes a feature attention module that takes into account both the global feature and the local information extraction of the image,which strengthens the network’s learning in image visual perception and detail texture.Secondly,in the process of feature extraction,a T-shaped method is proposed to obtain multi-scale image features,which expands the network’s representation ability.Finally,color balance is performed on the reconstructed clear image to obtain the final restored image.A large number of experimental results in synthetic data sets and real data sets show that the network proposed has superior performance when compared with other existing network models.
作者 杨燕 武旭栋 杜康 YANG Yan;WU Xudong;DU Kang(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第10期61-68,共8页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金项目(61561030) 甘肃省高等学校产业支撑计划项目(2021CYZC-04) 甘肃省优秀研究生“创新之星”项目(2021CXZX-611)。
关键词 图像去雾 小波变换 卷积神经网络 特征融合 image dehazing wavelet transform convolutional neural network feature fusion
  • 相关文献

参考文献3

二级参考文献19

  • 1Tan R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorgae, USA: IEEE, 2008. 1-8.
  • 2Tarel J P, Hautiére N. Fast visibility restoration from a single color or gray level image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2201-2208.
  • 3He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1956-1963.
  • 4Zhou W, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 5Carnec M, Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference. Image Communication, 2008, 23(4): 239-256.
  • 6Sheikh H R, Bovik A C, Cormack L. No-reference quality assessment using natural scene statistics: JPEG 2000. IEEE Transactions on Image Processing, 2005, 14(11): 1918-1927.
  • 7Hautiére N, Tarel J P, Aubert D, Dumont E. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereology Journal, 2008, 27(2): 87-95.
  • 8姚波, 黄磊, 刘昌平. 去雾增强图像质量客观比较方法的研究. 中国模式识别会议论文集, 南京, 中国: IEEE, 2009. 1-5.
  • 9Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 2002 IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 2002. 820-827.
  • 10Huang K Q, Wang Q, Wu Z Y. Natural color image enhancement and evaluation algorithm based on human visual system. Computer Vision and Image Understanding, 2006, 103(1): 52-63.

共引文献66

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部